| a Geometria Fractal
(El Aprendizaje de las
Nociones Bésicas)

Publio Sudrez Sotomonte’
FRACTAL GEOMETRY
(The learning of the basic notions).

“Si bien el estudio de la geometria fractal corresponde a diferentes ciencias,

- la geomorfologia, la astronomia y la teoria de la turbulencia, entre otras,
los objetos naturales en cuestion tienen en comin el hecho de

poseer una forma sumamente irregular o interrumpida;

a fin de estudiarlos, he concebido, puesto a punto

y utilizado extensamente una nueva

geometria de la naturaleza.”
(Mandelbrot, B. 1993)

1 Profesor de la Escuela de Matematicas de la UPTC. Magister en Educacién - UPN, estudios de doctorado en Didactica de
las Mateméticas y Ciencias Exactas - Universidad de Barcelona.
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En este articulo se presenta el desarrollo
de una vision didactica de la geometria a
través de una estructura de trabajo funda-
mentada en principios de corte cognitivis-
ta. En la primera parte se hace un esbozo
de los origenes y desarrollo de la geome-
tria fractal de la naturaleza, tema de esta
propuesta didactica, y se resalta su campo
de aplicacién. Se introduce una estrategia
didactica para la ensefanza y el aprendiza-
je a nivel superior (primeros semestres de
universidad) de la geometria fractal de la
naturaleza, a partir de los sistemas iterados
de funciones (IFS’s) y de algunos aspectos
tedricos de la didactica de la geometria.
En la tercera parte, se presenta una des-
cripcion de las actividades experimentadas
y los resultados obtenidos en cada una de
las etapas de la propuesta didactica. Se
pretende estimular el trabajo de los estu-
diantes con los sistemas geométricos y el
desarrollo del pensamiento espacial en este
tipo de geometria. Estas actividades han
sido trabajadas por los estudiantes de la
asignatura de geometria del programa de
licenciatura en matematicas de la Universi-
dad Pedagédgica y Tecnolégica de Colombia
(UPTC). Por ultimo, se describen algunos
resultados de trabajos desarrollados en el
area de la geometria fractal y se plantean
recomendaciones y conclusiones, fruto de
la labor de esta investigacion.

Palabras clave:
Geometria fractal de la naturaleza, sistemas

iterados de funciones (IFS’s), representa-
cién, estrategia didactica, aprendizaje.
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In this article it is presented the develop-
ment of a didactical vision of the geometry
through a structure of work based in princi-
ples of constructivist style. In the first part
(Introduction), It is made a sketch of the
origins and development of the fractal geo-
metry of the nature, theme of this didacti-
cal proposal and it is underlined its field of
aplication. It is introduced a didactical stra-
tegy for the teaching and the learning to a
superior level (first semesters of university)
of the fractal geometry of the nature, since
the iterated functions systems (IFS’s) and
of some theorical aspects of the didactic of
the geometry. In the third part, it is presen-
ted a description of the experimented acti-
vities and the results obtained in each one °
of the stages of the didactical proposal. It
is pretended to stimulate the work of the
students with the geometrical systems and
the development of the space thought in
this kind of geometry. Such activities have
been worked by the students of geometry
of the program of Bachelor in Mathematics
in the Universidad Pedagdgica y Tecnélogi-
ca de Colombia; finally, are described some
results of works developed in the area of
fractal geometry and are planned some re-
commendations and conclusions as a com-
pensation of the labour of this investigation.

Key words: didactics, mathematics educa-
tion, iterated functions systems (IFS’s), the
fractal geometry of nature, learning.




2. Introduccidén

La geometria fractal surge en el ambito de la
matematica como una poderosa herramien-
ta para modelar los fendmenos mas impre-
decibles y fascinantes de la naturaleza. En
la década de los afos sesenta, Benoit Man-
delbrot rescaté del olvido, con su trabajo,
algunos problemas, planteados a finales del
siglo XIX'y principios del XX, como fueron:
el conjunto ternario de George Cantor, las
lineas que “llenan” el espacio de Guiseppe
Peano y David Hilbert, la curva “no diferen-
ciable en todos sus puntos” de Helge Von
Koch, solucién de ecuaciones en Dinamica
no Lineal de Poincaré y el concepto de di-
mension de Félix Hausdorff, entre otros?.

El desarrollo de la ciencia informatica ha
permitido crear nuevos campos sobre la
representacion de modelos geométricos, a
partir de técnicas para el manejo del dibujo
en dos y tres dimensiones. Se puede avan-
zar en el estudio de fractales, gracias a la
implementacién de procedimientos y algo-
ritmos, formulados de manera mas general
en la teorfa mateméatica, como por ejemplo,
el teorema del collage y el algoritmo cono-
cido como “juego del caos”. La finalidad es
dibujar aproximadamente (tanto como se
desee) los atractores de sistemas dinami-
cos, que particularizados en la pantalla del
ordenador (espacio discreto), generan los
distintos ejemplos de la viabilidad al mode-
lar la naturaleza, o al menos, aproximarse a
través de la representacién de sus modelos.

En este articulo, se presenta una propuesta
para el aprendizaje de la geometria fractal,
basada en una investigacion en el &mbito de

2 GUZMAN Miguel, y otros. Estructuras fractales y sus apli-
caciones. Barcelona: Editorial Labor, 1993.

la educacion matemética; se enfatizan los
fractales autosemejantes y su relacién con
los objetos de naturaleza, en donde subya-
cen estas estructuras. Para esto se descri-
be una estrategia didactica, desarrollando
de manera gradual, las etapas de explora-
cién de nuestro medio, de visualizacién, en
donde se trabajan diversos sistemas semié-
ticos de representacién, de manera especial
la representacién-modelacién en computa-
dor, la construccién formal en estructuras
algebraicas principalmente y la etapa estu-
dio de aplicaciones. Por dltimo, se descri-
ben resultados de trabajos posteriores de
los estudiantes, en la teoria de fractales.

3. Referentes teoéricos de la
geometria fractal y sus
aplicaciones

3.1 Surgimiento de los fractales

El termino “fractal”, ideado por Mandelbrot,
proviene del término latino “fractus” cuyo
significado “interrumpido o irregular” des-
cribe fielmente, la forma de los objetos que
se van a estudiar®. Gracias a la introduccién
de la tecnologia informatica y de multime-
dia, el auge de algunas ramas de las mate-
maticas ha sido palpable en las Gltimas tres
décadas y su desarrollo se ha centrado en
la geometria fractal, geometria diferencial,
analisis numérico, ecuaciones diferenciales,
dindmica no lineal, topologia y teoria de la
medida. Al replantear y modelar dichos pro-
blemas y algoritmos en pantallas de com-
putador de alta resolucién, se descubrieron
resultados insospechados y encantadores
por su forma y colorido; por ejemplo, el

3 GUZMAN Miguel, y otros. Estructuras fractales y sus apli-
caciones. Barcelona: Editorial Labor, 1993.
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“Conjunto de Mandelbrot”, el mas conocido de los objetos fractales y, probablemente, de
los mas complicados en su estructura®. También es catalogado como el objeto fractal mas
extrafio y fascinante encontrado hasta el momento en las matematicas.

La intuicién grafica de la mente del matematico francés Benoit Mandeibrot, le ha permitido
proporcionar un lenguaje para describir fenémenos muy variados de gran interés cientifico
y practico, dejando algunas veces en segundo plano la fundamentacion tedrica y los aspec-
tos excesivamente formales de esta nueva geometria, cuya aplicacion ha enriquecido las
herramientas para solucionar problemas en las ciencias naturales y fisica, geologia, astro-
nomia, estadistica, economia y ciencias de la computacion, entre otras.

Esta claro, que los fractales abarcan no solo los campos del caos, sino una amplia variedad
de formas naturales, que resultaban imposibles de describir mediante la geometria dife-
rencial hasta ahora desarrollada. Dichas formas son, entre otras, las lineas costeras, los
arboles y plantas, las montanas, las galaxias, las nubes y:los patrones meteorolégicos. Asi
mismo en anatomia humana, el cerebro, los pulmones , el sistema nervioso, la estructura
celular. Otros fenémenos impredecibles, como la turbulencia de los vientos y las aguas, el
crecimiento de la poblacién de una especie bajo cierto ambiente, las oscilaciones bursatiles
en la bolsa de valores , etc..., escapan al alcance del mundo del orden®.

Gréafica Nro. 1. El Arte Fractal : Grafica Nro. 2. El Helecho : Objeto natu-

Fotografia de dibujos en cultivos ral dibujado por computador cuya caracte-
ristica de autosemejanza es evidente.

E| término fractal introducido para designar las formas irregulares, base del trabajo de
Mandelbrot, puede caracterizarse intuitivamente como una figura o modelo cuya forma es
sumamente irregular, interrumpida o fragmentada, y sigue siendo asf, a cualquier escala |

4 PEITGEN, Heinz-Otto y RICHTER, P. H. The beauty of fractals. Berlin: Springer-Verlag, 1986.

5 BRIGGS, John y PEAT, F. David. Espejoy reflejo, del caos al orden. Barcelona: Gedisa Editorial, 1994.
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de | que se produzca el examen®. Como caracteristicas fundamentales de un fractal, se conside-

as | ran la autosemejanza o autosimilaridad en su forma, la reiteracién o iteracién en la forma-
cion de su modelo, la dimensién que intenta describir su tamafno o densidad y el concepto
de atractor para caracterizar la figura cuando el proceso de iteracién tiende a infinito.
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s |
- Se dice que un objeto de la naturaleza es fractal, cuando un modelo de caracteristicas
. fractales lo representa o constituye su modelo ideal. La distincién entre fractal como objeto
— | matemaético y como objeto de la naturaleza no se hace evidente, intencionalmente, en los
. trabajos de Mandelbrot y sus seguidores; Ginicamente se hace necesaria cuando realiza la
generalizacién y formalizacion de estos temas. Desde la Topologia, los fractales han sido
estudiados formalmente por muchos matematicos teéricos, entre ellos son considerados
pioneros, Hutchinson’ y Barnsley®. En estos dos trabajos, los fractales fueron caracteriza-
dos como objetos dentro de los subespacios compactos de un espacio métrico completo.
. Los conjuntos de puntos que forman un fractal se distinguen de los conjuntos tradicionales,
. comparando la dimensién topolégica usual y su dimensién fractal.
Grafica Nro. 3. Esponja de Mandelbrot.
Se parte de un cubo y se divide en 27 cubitos,
55 en arreglo 3*3*3, de los cuales se toman solo
|| | veimte, al quitar el cubo central de cada cara
| y el cubo del centro. La segunda iteracion
= consiste en aplicar este procedimiento a cada
o cubito resultante, y asi sucesivamente.
S
la

6 MANDELBROT, Benoit. The fractal geometry of nature. New York: W. H. Freeman and Company, 1983.
7 HUTCHINSON, J. E. Fractals and self-similarity. Indiana: Univ. Math. J. 30 713-749, 1981.
8 BARNSLEY, Michael. Fractals everywhere. San Diego: Academic Press INC, 1988.
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Desde sus origenes, ha surgido una polémi-
ca, en gran parte superada, que enfrentan
los investigadores précticos y tedricos de la
geometria fractal, generada por el excesivo
optimismo de los primeros sobre sus alcan-
ces, a los que se les exigia la formalizacion
tedrica que construyeron los segundos. Los
investigadores empiricos atribuyen su pa-
ternidad a Mandelbrot (ya reconocida en el
ambito cientifico y aceptada por él mismo);
desconocen los trabajos anteriores de tipo
tedrico, especialmente en teorfa de la me-
dida. Mandelbrot reconoce que desenterro
“piezas sueltas” antiguas de gran valor ma-
tematico pero concebidas para usos total-
mente distintos®. Asi mismo, las exageracio-
nes sobre las aplicaciones de la geometria
fractal han creado escepticismo en algunos
matematicos, ante la falta de fundamenta-
cién tedrica formal en el desarrollo de ta-
les afirmaciones. A este proposito, Guzman
y otros, manifiestan que en esta polémica
no han participado los matematicos, quie-
nes han realizado y realizan aportaciones
fundamentales a la teoria de la geometria
fractal'.

3.2 Los fractales en tiempo de escape

Una clasificacion general de fractales pue-
de ser planteada de acuerdo con el tipo de
estructuras que en ellos subyacen y que son
empleadas para generar las representacio-
nes de los atractores''. El primer grupo son
los llamados fractales escalantes o autose-
mejantes, generados por los distintos tipos
de sistemas iterados de funciones (IFS’s).

9 MANDELBROT, Benoit. The fractal geometry of nature.
New York: W. H. Freeman and Company, 1983.

10 GUZMAN Miguel, y otros. Estructuras fractales y sus
aplicaciones. Barcelona: Editorial Labor, 1993.

11 WEGNER, Tim y TYLER, Bert. El mundo de los fractales,
convierta los niimeros en una realidad fractal. Madrid:
Ediciones Anaya Multimedia S.A, 1995.
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Una segunda gran variedad de fractales,
que se denominan fractales en tiempo de
escape, nombrados como fractales tipo
Mandelbrot y Julia. Los fractales generados
por 6rbitas de sistemas dinamicos en tiem-
po de escape finito (tipo Mandelbrot) y or-
bitas de sistemas dinamicos que convergen
a algun punto del plano complejo, son cono-
cidas como fractales generados por tiempo
de escape finito. Por dltimo, se plantea una
amplia variedad de fractales tipo atractores
extrafios, generados por algoritmos en sis-
temas dindmicos, considerados mas gene-
rales, dentro de los cuales se destacan, el
estudio de.ecuaciones diferenciales y ecua-
ciones en diferencias.

Al trabajar con procesos algoritmicos, el
papel del anélisis numérico es primordial,
pues muy dificilmente se puede avanzar
en su 6ptima implementacién, sin analizar
las implicaciones sobre el uso de métodos
recurrentes e iterativos, como la solucién
aproximada de ecuaciones no lineales. Los
métodos iterativos, proveen una excelente |
oportunidad para estudiar algunos fractales
llamados atractores extrafos, como los ge-
nerados mediante las érbitas de sistemas
dindmicos, representados apropiadamen-
te en el espacio de fases, como por ejem-
plo, los fractales tipo bifurcacion, cuando
al abordar su estudio, no es de interés la
convergencia sino la divergencia de ciertas
sucesiones.

Michael Barnsley, en su texto Fractals
Everywhere, muestra otra alternativa, esta
vez desde la topologia, al mostrar los frac-
tales como los objetos matematicos que =
viven en los espacios de subconjuntos com-
pactos de un espacio métrico completo, en
donde se considera la métrica de Hausdorff.
El estudio de los sistemas dindmicos dentro =
de la dindmica no lineal, del concepto de la




= -
S, dimensién en teoria de la medida y el anali-
Je | sis sobre la solucién de algunas ecuaciones
0 diferenciales y sistemas de ellas, para com-
bs - prender la dinamica de algunos fenémenos
n- = naturales, se constituyen en alternativas,
r- = no solo para emprender el estudio de los
3n | fractales, sino para contextualizar dichos
0- conceptos con soporte en las estructuras
0 | matematicas de tipo algebraico que confor-
'a | man cada una de las ramas mencionadas.
S
s- | 3.3 Los sistemas iterados de funciones
o-
el | En los dltimos afios se ha generado un ar-
a- | duo trabajo para dar sustento formal a la
teoria fractal, lo que afortunadamente ha
tenido éxito. Para abordar el estudio de los
el | fractales existen varios caminos, el empren-
al, | der la construccién de los conceptos desde
ar | la geometria de las transformaciones sus-
ar = tentada en los espacios vectoriales, objeto
>S = de estudio del algebra lineal, hasta llegar a
n | los espacios euclideos y el espacio afin.
S
te © Una formalizacién bien conocida propuesta
S | por Hutchinnson'? en su trabajo sobre frac-
- tales y autosimilaridad, proporciona un sus-
1S | tento matematico a los fractales autoseme-
N- | jantes generados por sistemas iterados de
n- = funciones, por sus siglas en inglés (IFS’s).
lo ' Formalmente, consta de una coleccién finita
la | de afinidades contractivas sobre un espa-
AS | cio métrico completo, junto con su atrac-
tor A, simbolizado en (Barnley, 2005) por
Is W={(X,d),{Z,71,...,TW},A}. Asumiendo un
tq | interés didactico, se amplia la notacién de
- los IFS’s, especificando la coleccién infini-
e = tadeniveles del fractal, que llamamos nivel
- | cero (N,) , nivel uno (N,) y asi sucesiva-
N
f.
‘0 12 HUTCHINSON, J. E. Fractals and self-similarity. Indiana:
ol Univ. Math. J. 30 713-749, 1981.

mente, los cuales son generados recursiva-

mente. Al subconjunto compacto inicial C,
se le llama “semilla”. El nivel k-ésimo, se de-

notada N, . Se considera la transformacién
T definida sobre la coleccién de subconjun-

tos compactos de X, denotada H(X) ast:

N, =T(N)=||TWw o

e =T, Ul ‘W) La transformacion T es
contractiva (el factor de contraccion es el
maximo de la coleccién de factores de con-

traccion de la coleccién finita{]’i, i EF}) sobre

el espacio métrico de Hausdorff, (H(X) h).
A la transformacion T se la llama mecanis-
mo de reproduccién. Asi queda determinada
una sucesion de Cauchy de subconjuntos
compactos (la compacidad se garantiza por
ser T contractiva sobre un espacio métri-

co), denotada <Ni>i20, en el espacio métrico

(H(X) h). El atractor es la interseccion de
la coleccién infinita de niveles del IFS. Esto

es, A=mNi. La convergencia se asegura

i=0
por ser (H(X),h)un espacio métrico com-
pleto. El atractor es considerado como el
unico limite de la sucesion de Cauchy de los
subconjuntos compactos que llamamos “ni-
veles”. De esta manera, cuando se habla de
un sistema iterado de funciones (IFS), que-
dan fijados, un espacio métrico completo, el
de sus subconjuntos compactos, en donde
es considerada la métrica de Hausdorff, la
coleccion finita de transformaciones afines
contractivas sobre X, el subconjunto com-
pacto inicial (semilla), la transformacion

afin contractiva T sobre H(X), la sucesion
de Cauchy de niveles y el Gnico atractor A.
Esto se denota de manera ampliada:
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W= {ex.ay.@ao.m, ],Tz,...,Tn}CO,T,<NI,Nz,...,Nk,...>,A}

El fractal asociado con el IFS denotado
como W, se representa con el atractor.
Posteriormente fueron propuestos los sis-
temas iterados de funciones probabilisticas
(PIFS’s), en donde a cada transformacién
afin, se le asocia una probabilidad. Esto es,

Wp " {(X’d)a{T;’Tw"'ﬂTn}’{pva"'apn ’A}

En donde, paracadai, 0<p, <1y Epl_ =1
i=1

Las afinidades contractivas permiten es-
tructurar y clasificar los diversos tipos de
sistemas iterados de funciones, que sub-
yacen como modelos matematicos de los
fractales autosemejantes. Las clases de
sistemas iterados de funciones (IFS), entre
ellos los IFS con probabilidades y los IFS
recurrentes, se afianzan como tematicas
fundamentales para modelar los fractales
escalantes.

Una clasificacion de sistemas de iterados
de funciones'® ha sido construida en el am-
bito tedrico, la cual comprende: los siste-
mas iterados de funciones clasicos (IFS's),
los sistemas iterados de funciones con pro-
babillidades (PIFS’s), los sistemas iterados
de funciones recurrentes (RIFS’s), los siste-
mas iterados de funciones locales (LIFS's),
los sistemas iterados de funciones de un
solo espacio (ssLIFS’s), fractales v-varia-
bles y los superfractales'. Dicha taxonomia

13 WADSTROMER ,Niclas. Coding of fractal binary images
with contractive set mappings composed of affine trans-
formations. Linképing: Linképing University, 2001.

14BARNSLEY Michael, HUTCHINSON John E. and STENFLO
Orjan. V -variable fractals and superfractals. Canberra: Aus-
tralian National University, Department of Mathematics 2003.
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pretende mejorar los modelos matematicos
para representar de manera realista los ob-
jetos de la naturaleza.

4. Referentes didacticos

Los enfoques futuristas en educacion ma-
tematica, han propiciado la inclusion en la
formacion matematica de nuestros estu-
diantes, este nuevo tipo de geometria, in-
tegréndola con la amplia variedad de tipos
de geometria como, las geometrias no eu-
clidianas, y sus diversos modelos hiperbo-
lico y esférico, la geometria proyectiva, la
geometria‘plana absoluta y sintética; en un |
ambito méas general, la geometria diferen-
cial, la geometria de coordenadas y la teoria
de grafos. La dindmica en el desarrollo de la
matematica, es tal, que algunos han llegado
a afirmar “...la matemética que se aprende-
r4 y ensefaré dentro de veinte afios, alin no
se ha descubierto...”. Cuando se habla de
la ciencia que prevalecera en el siglo XXI,
segln Vasco, C., la geometria fractal y su
relacién con la teoria del caos, ocupan un
lugar preponderante en las propuestas cu-
rriculares visionarias'®.

Este trabajo de investigacion sobre el
aprendizaje de las nociones basicas de la |
teorfa fractal de la naturaleza, adopta dicha
directriz. Se pretendi6 sistematizar algunas
experiencias, pues se incorpora la teoria
fractal de la naturaleza, al curriculo de la
educacién superior y a las asignaturas de
geometria y analisis numérico en la carre-
ra de licenciatura en matematicas e inge-
nierias de la Universidad Pedagodgica y Tec-
nolégica de Colombia (UPTC), se plantean
aspectos practicos, tecnolégicos y formales

15 VASCO, Carlos E. Didactica de las Matematicas. Las ma-
tematicas: éArte o ciencia?. Bogota: Universidad Pedagé- -
gica Nacional. 2006.
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introductorios, especificamente elementos
tedricos, conceptos, modelos y estructuras
matematicas necesarias para formalizar la
teorfa de los fractales, como herramienta
para describir y descubrir los secretos de
objetos de la naturaleza.

La formacién geométrica recibida tradicio-
nalmente, abarca el mundo del orden, de las
formas bien formadas, correspondientes a
la geometria euclidea y hacen parte del ob-
jeto de estudio de la geometria diferencial.
Es dificil encontrar estas formas tan regula-
res en nuestro medio, pues parece ser que
los fenémenos de la naturaleza, obedecen
con mayor énfasis a leyes cadticas, indeter-
minadas y propias del azar, més explicables
desde la teoria del caos. Las formas se ase-
mejan a lo irregular, a cualquier escala de
observacion, y a lo infinitamente fragmen-
tado, propio de la relativamente nueva geo-
metria fractal de la naturaleza. El matema-
tico francés Benoit Mandelbrot, precursor
de la teoria fractal, conceptia al respecto:
“[...] Objetos naturales muy diversos, mu-
chos de los cuales no son familiares, tales
como la tierra, el cielo y el océano, se es-
tudian con la ayuda de una amplia familia
de objetos geométricos que hasta ahora
habian sido considerados esotéricos e in-
utilizables, pero que, por la simplicidad,
la diversidad, y la extension extraordina-
rias de sus nuevas aplicaciones, merecen
ser<integrados hasta en la geometria ele-
mental. Si bien su estudio corresponde a
diferentes ciencias, la geomorfologia, la
astronomia y la teoria de la turbulencia, en-
tre otras, los objetos naturales en cuestion
tienen en comun el hecho de poseer una
forma sumamente irregular o interrumpida;
a fin de estudiarlos, he concebido, puesto

a punto y utilizado extensamente una nueva
geometria de la naturaleza."'®

Frente a tan precursora invitacion, es dificil
resistirse, solamente se debe escoger el ca-
mino mas apropiado para emprender el es-
tudio de tan novedosa geometria. Al iniciar
el estudio en el mundo fascinante de la geo-
metria fractal, y debido a los aspectos an-
teriormente mencionados en su desarrollo
histérico, se tienen opciones alternas, se-
gun el tipo de formacién y el proposito que
se tengan al abordarlo. Si el interés es de
caracter formal, se puede llegar a los con-
ceptos fractales con el estudio en topolo-
gia de los espacios métricos. En teorfa de la
medida se aborda el problema de la dimen-
sién; en dinamica no lineal, las érbitas de
los sistemas dinamicos; en andlisis numeéri-
co, los métodos de solucién de ecuaciones
no lineales (y sistemas de ellas) en variable
real y compleja; en algebra lineal, el estudio
formal de las transformaciones afines, que
sirven de soporte para la geometria de las
transformaciones. Se complementa con las
nociones de programacion de computado-
ras, haciendo especial énfasis en procesos
iterativos y recursividad.

Se presentan a continuacion los conceptos
matematicos basicos, tanto de educacion
matematica, como de la didactica para en-
sefar y aprender geometria, en donde se

contextualiza la propuesta.
4.1 Aspectos de didactica de la geometria
Siguiendo a Font V."7, el presente trabajo

se enmarca dentro de las tendencias de in-
vestigacion en educaciéon matematica, con

16 MANDELBROT, Benoit. The fractal geometry of nature.
New York: W. H. Freeman and Company, 1983.

17 FONT Viceng, Una organizacién de los programas de in-
vestigacion en didactica de las matematicas. Bogota: Re-
vista EM, 2002, Vol. 7, N° 2, 127-170.
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referentes tedricos para la naturaleza epis-
temolégica de las mateméticas, las concep-
ciones de aprendizaje y ensefanza, desde
las propuestas combinadas del cognitivis-
mo, especialmente la corriente de Ausubel
y Novak expuesta en '® y constructivismo
social del conocimiento.

4.1.1 Tendencias en educaciéon geométri-
ca en Colombia

Como referentes tedricos de la propuesta,
también se han tenido en cuenta algunos
aspectos combinados de las tendencias en
educacién geométrica, especialmente en
Colombia. El aprendizaje de la mateméatica
ha desarrollado a través de los afos varios
enfoques dependientes, entre otros aspec-
tos, de la concepcion epistemoldgica tanto
del docente como del estudiante frente a la
naturaleza del conocimiento cientifico y su
relacion con el conocimiento cotidiano, y la
concepcion sobre la naturaleza de la mate-
matica. Por ultimo, se han tenido en cuenta
enfoques o tendencias en educaciéon mate-
matica referentes a las formas de aprender
y ensenar.

Dos trabajos fundamentales para desper-
tar la reflexiéon acerca de los temas peda-
gogicos de la geometria como elementos
en la formacién integral del individuo, han
sido las contribucion de Alberto Campos'®.
Abarca desde una revisién histoérica de los
concepciones epistemoldgicas de las clases
de geometria, el estudio de aspectos tedri-
cos claves, hasta las implicaciones genera-

18 NOVAK, Joseph y GOWIN, Bob. Aprender a aprender.
Barcelona: Editorial Martinez Roca, 1988.

19 VASCO, Carlos E. Un nuevo enfoque para la didactica de
las matematicas. Volumen | y Il Bogota: Ministerio de Edu-
cacién Nacional, MEN, 1992.
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das en la educacion geométrica en las insti-
tuciones universitarias en Colombia.

El otro se plasma en uno de los esfuerzos
mas relevantes que transformé los fun-
damentos y estructura de los programas
curriculares en el area de matematicas a
nivel béasico; fue liderado por Carlos Eduar-
do Vasco Uribe y un grupo de educadores
programadores del Ministerio de Educacién
Nacional y docentes en ejercicio al servicio
del estado. Segin Vasco, la “Geometria Ac-
tiva” se fundamenta en la exploracion activa
del espacio y sus formas de representacion
en la imaginacién y en el plano del dibujo.
Se hace mayor énfasis en el espacio, que en
la representacion bidimensional y el plano;
se fortalece la exploracion mediante activi-
dades ludicas que parten de los movimien-
tos del cuerpo, como los giros, vueltas, des-
plazamientos y barridos con los brazos. En
sintesis, se aboga por rescatar del olvido, a
la geometria, pero no para enmarcarla den-
tro de un enfoque estructuralista y reducirla
a un libro de algebra lineal, sin un solo dibu-
jo, tampoco para describirla dentro del sis-
tema axiomético-deductivo en el &mbito de
la l6gica como en la euclidiana. Al respecto,
en palabras de Vasco, “[...] la propuesta
de la geometria activa invita a estudiar y
aprender con los grandes maestros, Tales
y Pitégoras, la escuela de Atenas y de Ale-
jandria, con los criticos de Euclides, desde
Proclo y Clavius a Hilbert y Bourbaki; y con
los geémetras no euclidianos como Sache-
ri, Lambert, Gauss, Lobatchevsky, Bolyai,
Riemann, Beltrani y Poincaré. Pero invita a
estudiarla como un ejercicio activo del pro-
pio cuerpo, de la imaginacion y del dibujo.
Y a no perder nunca el aspecto activo y di-
némico, para llenar el tablero de mas y mas
figuras muertas y de simbolos estaticos.
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Eso no seria geometria: seria el cadaver de
la geometria. "%,

Los esténdares basicos de competencias
en matematicas proponen el desarrollo
del pensamiento espacial y la exploracién
de los sistemas geométricos, como enfo-
que para el trabajo relativo a lo que tradi-
cionalmente conocemos como geometria.
Dicha propuesta curricular se basa en los
Lineamientos Curriculares del Ministerio de
Educacién (MEN, 1998) y los programas de
Renovacién Curricular (MEN, 1984). De es-
pecial interes se consideran los procesos de
visualizacion, de justificacion y construccién
geomeétrica como encadenamiento natural
de los dos procesos precedentes. La incor-
poracion de nuevas tecnologias al curriculo
de mateméticas, desarrollado por el esfuer-
zo mancomunado del Ministerio de Educa-
cién Nacional y varias universidades esta-
tales, se constituyd, en alguna medida, en
dinamizador en la implementacién de practi-
cas novedosas, reflexion en el area y motor
de impulso de estos proyectos generados
localmente.

4.1.2 Representaciones semiéticas y
mentales

Uno de los aspectos claves en la propues-
ta de aprendizaje de la geometria fractal es
el papel que juegan las representaciones
graficas en la comprensién y construccién
conceptuales. Al respecto Duval manifiesta
que no puede haber comprension en ma-
tematicas si no se distingue un objeto de
Su representacion. Un mismo objeto puede
darse a través de representaciones muy di-
ferentes. Dicha confusién provoca pérdida

20 VASCO, Carlos E. Un nuevo enfoque para la didactica de
las matematicas. Volumen 1, Bogota: Ministerio de Edu-
cacion Nacional, MEN, 1992.

de aprendizaje. Las diversas representacio-
nes semidticas de los objetos matematicos,
serian pues secundarias y extrinsecas a la
aprehension conceptual de los objetos.

Para esta propuesta se adopta la tesis de
Duval, en la cual las representaciones se-
mibticas no solo son indispensables para
fines de comunicacién sino que son nece-
sarias para el desarrollo de la actividad ma-
tematica misma. La posibilidad de efectuar
transformaciones sobre los objetos mate-
maticos depende directamente del sistema
de representacion semidtico utilizado. La
utilizacién de dichos sistemas es primordial
en la actividad matematica y parece serle
intrinseca.

Tradicionalmente la formacién geométrica
ha estado centrada, por mas de veinte si-
glos, en la presentacion en modelo axioma-
tico de los Elementos de Euclides; los diver-
sos sistemas de representacién han estado
relegados a la verificacién y comprobacion
de algunas de las propiedades. Respecto
a la relacion entre representaciones men-
tales y representaciones semidticas, Duval
manifiesta, “[...] desde el punto de vista
genético, las representaciones mentales y
las representaciones semidticas no pue-
den oponerse como dominios totalmente
diferentes. El desarrollo de las iméagenes
mentales se efectia como una interioriza-
cion de las representaciones semidticos de
la misma manera que las imédgenes menta-
les son una interiorizacion de los precep-
tos (Vigotski, 1985; Piaget 1968; Denis
1989). "2

Respecto al trabajo con diversos sistemas
de representacién semidtica, como soporte

21 Duval, Raymond. Semiosis y pensamiento humano. Regis-
tros semiéticos y aprendizajes intelectuales. Cali: Univer-

sidad del Valle, 1999.
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fundamental de las operaciones mentales
y la construcciéon de esquemas mentales,
Duval conceptta, “[...] la pluralidad de los
sistemas semidticos permite una diversi-
ficacion tal de las representaciones de un
mismo objeto, que aumenta las capacidad
cognitivas de los sujetos y por tanto sus
representaciones mentales (Benveniste,
1974, Bresson 1987)... Las representacio-
nes mentales nunca pueden considerarse
independientemente de las representacio-
nes semidticas. "

Es claro que se debe distinguir entre el con-
cepto y sus distintas formas de representa-
cién. Cuando se trabaja en el aprendizaje
de los fractales, suele confundirse el fractal
con su representacion. La nocion y la es-
tructura que subyace en este objeto, es el
concepto matematico de fractal, sus diver-
sas representaciones son aproximaciones a
dicho objeto. Los fractales, desde el punto
de vista estricto, solo existen en la mente,
su representacion a través de atractores,
son simples aproximaciones de dicho con-
cepto.

4.1.3 La representacion en educacion
matematica

Uno de los problemas de investigacion en
educacion matematica, que mayor desarro-
llo ha tenido en las Ultimas tres décadas, es
el papel de la representacién, pues se han
tratado de responder preguntas respecto a
su naturaleza, sus tipos y el significado que
tiene respecto a la construccion de los con-
ceptos matematicos. Es comin en el apren-
dizaje de las matematicas, hablar de repre-
sentaciones externas o internas a nuestra

22 Duval, Raymond. Semiosis y pensamiento humano. Re-
gistros semidticos y aprendizajes intelectuales. Cali: Uni-
versidad del Valle, 1999.
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mente, representacién mental, imégenes, |
modelos y esquemas y su papel de inter-
mediarias en la elaboracién de los concep-
tos, o en sentido inverso, como evidencia
de la existencia de un concepto o idea, en
la representacioén se evidencian conceptos
matematicos. Al respecto D’Amore, Bruno
expresa: ‘[...] La imagen suscitada por el
hacerse cargo cognitivo de un concepto
matematico da una informacién que toma
en cuenta la cultura individual, la experien- -
cia personal y las capacidades generales
del individuo (pero también su capacidad
especifica de construirse imagenes: y esto
podria ser objeto de atencién del maestro);
siendo al' menos en primera instancia in-
voluntaria, la imagen mental se forma por
simple asociacién verbal o icénico, o por:
otra cosa. A sucesivos estimulos, puede
suceder que se tenga discrepancia entre la:
imagen formada espontéaneamente y la so-
licitacion misma; en estos casos se puede
tener conflicto cognitivo. Entonces le co-
rresponde al individuo poner en movimien-:
to sus propias habilidades en este campo
(en el sentido de Katz) y elaborar la ima-
gen hasta acomodarla a la nueva situacion,
determinada por el estimulo (por ejemplo
del docente). Se llega asi a una nueva ima-
gen que podemos llamar sucesiva de la:
precedente porque es mas extensa que la
anterior. Este proceso puede repetirse mas
y mas veces, obteniendo asi una sucesion
de imégenes mentales que acompanan
los estimulos producidos alrededor de un
concepto ™. Esta concepciéon de imagen
mental evoca una analogia con el proceso
de generacién de imagenes fractales por ni-:
veles, tal vez sea una simple coincidencia;
claro esta, que en dicha concepcién no se
asegura que haya una convergencia garan-

~  ~

Ny |

23 D’Amore Bruno. Didactica de la matemética. Bogota:
Cooperativa Editorial Magisterio,2006. pp 165-166.
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tizada hacia una imagen mental “mejor ela-
borada o0 méas extensa”, que sirva de simil
al atractor.

Desde el enfoque ontosemibtico, Font V,
Godino J. y D’Amore B. conceptlan sobre
la dificultad de la investigacién en el tema
de las representaciones: “[...] En nuestra
opinién, la complejidad del tema, la ambi-
guiedad de las representaciones y su im-
portancia estan en los objetos matematicos
que se trata de representar, su diversidad y
naturaleza. Hablar de representacién (sig-
nificado y comprensién) implica necesaria-
mente hablar del conocimiento mateméati-
co, y por tanto, de la actividad matemaética,
sus “producciones” culturales y cognitivas,
asi como de las relaciones con el mundo
que nos rodea."?*

Para este trabajo se adoptan las nociones
de representaciones semidticas, definidas
por Duval, representaciones mentales, en
el sentido de imagen mental definida por
D’Amore y algunas concepciones de Font
V.%, sobre el papel de la representacion
en educacién matematica. Se mencionan a
continuacion supuestos tedricos respecto a
la representaciéon que contextualizan el tra-
bajo.

Nos ubicamos en la opcién epistemoldgica
“representacionalista”, que segun Font V.:
‘[...T presupone que las personas tienen
una mente en la que se producen procesos
mentales y que los objetos externos a las

24 FONT, Viceng, GODINO Juan D. y D'Amore, Bruno. Enfo-
que ontosemidtico de las representaciones en educacion
matematica. Barcelona: Universidades de Barcelona Gra-
nada y Bolonia, 2007.

25 FONT, Viceng. Algunos puntos de vista sobre las repre-
sentaciones en didéctica de las matematicas. Barcelona:
Departamento de Didéctica de las CCEE y la Matematica
de la Universidad de Barcelona.

personas generan representaciones men-
tales internas”.Se distinguen las represen-
taciones internas y externas. Segln Font
V., conceptua: “[...] De acuerdo con este
punto de vista, las personas tendriamos
un conjunto (probablemente infinito) de
representaciones mentales que se pueden
agrupar en tres tipos: 1) Las que la per-
sona considera externas (las representa-
ciones internas que son el resultado de la
codificacién de estimulos externos), 2) Las
propiamente internas y 3) Las represen-
taciones internas que sirven para realizar
representaciones consideradas externas
(representaciones internas que se pueden
descodificar produciendo respuestas en el
medio exterior) "°.

Respecto al concepto de fractal, siempre
se tendré presente no confundir el concep-
to matemético con su representacién, de
acuerdo a la indicacién de Duval, si bien, al
estudiar las representaciones no se pueden
aislar de su significado.

Intencionalmente, se distinguen los objetos
de la naturaleza (que abusando del lenguaje
se llaman objetos fractales), sus represen-
taciones, tanto internas como externas, los
modelos externos e internos y las estructu-
ras. Una cosa es el concepto de fractal y su
representacion, y otra, es que los procesos
iterativos sirvan para construir representa-
ciones y modelos de la naturaleza.

Los dibujos generados en aplicaciones
de geometria dinamica, son considerados
como representaciones externas (no osten-

26 FONT, Viceng. Algunos puntos de vista sobre las repre-
sentaciones en didactica de las matematicas. Barcelona:
Departamento de Didactica de las CCEE y la Matematica
de la Universidad de Barcelona.

Prospectiva Cientifica

33




T el

Gt

34

sivas, en el sentido del enfoque ontosemié-
tico).

Desde el punto de vista matemético formal,
no pueden existir representaciones exter-
nas totalmente fieles al concepto de fractal.
Es por ello que muchos autores han afir-
mado que los fractales solo se pueden ver
con “los ojos de la mente”. Las represen-
taciones de pizarras electrénicas, tambien
llamadas dibujos-dinamicos, se representan
en espacios discretos. Cuando la resolucion
de la pantalla es buena, nuestra mente per-
cibe procesos continuos, asi realmente no
lo sean, problema que ha sido estudiado
con el auge de las aplicaciones de matema-
tica simbdlica y gréfica. En la literatura de
fractales ya se han hecho distinciones entre
sistemas iterados de funciones (IFS’s) dis-
cretos y continuos, y se han estudiado sus
implicaciones.

La teoria de los esquemas, como entes que
organizan y modelan el conocimiento en
distintos niveles de abstracciones?, se dis-
tingue claramente de las definiciones ma-
tematicas. En este trabajo, se usan como
instrumentos, los mapas conceptuales, las
entrevistas, la observacion directa, los cues-
tionarios abiertos, las representaciones ex-
ternas (no necesariamente gréficas), para
detectar de manera aproximada las comple-
jas estructuras pre y pos conceptuales, or-
ganizadas a través de esquemas mentales
(que son construcciones individuales, pero
que han sido incididos colectiva, institucio-
nal y culturalmente).

Las representaciones graficas son exten-
samente trabajadas, pero no se considera
que puedan constituirse en obstaculo para

27 D'Amore Bruno. Didactica de la matematica. Bogota:
Cooperativa Editorial Magisterio, 2006. pp. 194-195.
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la posterior formalizacién matemética de la
teoria fractal.

4.1.4 La geometria dindmica

La amplia divulgacion que han tenido |
aplicaciones de geometria dinamica como
Cabri Geometry Il, Cabri3D, Sketchpad,
Regla y Compas, Calques, NonEuclid, Fz-
plot, ademés de los ya mencionados progra-
mas de matemética simbdlica y los especia-
lizados para dibujar y modelar fractales, nos |
hace pensar que aprender matematicas, al
menos en los primeros niveles de la univer- |
sidad, sinel uso de estos recursos informé-
ticos, serfa privarse de vivir experiencias
fascinantes y novedosas en el campo de las
representaciones de conceptos matema-
ticos. Por supuesto que cuando se usa el
ordenador como mediador del aprendizaje y
la ensefanza de las matematicas, cambian
las concepciones tradicionales del profesor
y estudiante frente a sus practicas educa-
tivas. Sobre este tema Moreno conceptla:
“[...] Las herramientas computacionales,
modifican la naturaleza de las exploracio-
nes y la relacién de dichas exploraciones
con la sistematicidad del pensamiento ma-
tematico... Algunos autores se han inte-
resado por la génesis instrumental de las
herramientas computacionales (Rabardel,
1995)"28. Al aceptar la mediacion de la piza-
rra electrénica, de los ordenadores y com-
putadoras, no se trata de trabajar. con las
mismas practicas educativas tradicionales.
Se deben modificar las situaciones proble-
maticas, los problemas, las tareas, las re-
presentaciones y hasta la forma de indagar
e investigar sobre el conocimiento matema-

28 MORENO, Armella Luis. Argumentacién y formalizacién
mediadas por Cabri-Geometry. Bogoté: Tecnologias com-
putacionales en el curriculo de matematicas. Ministerio de
Educacion Nacional, 2002. pp. 46-47
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tico. Al respecto de los principios con que
fue elaborado el programa Cabri Geometry,
Collette Laborde manifiesta “[...] El pro-
grama ha sido elaborado con la idea que
el paso por las primitivas geométricas de-
beria favorecer el uso de conocimientos
geométricos...El entorno, responde pues,
a la intencién de ofrecer un sistema de sig-
nificantes que tenga un dominio mayor de
funcionamiento, en relacién con la geome-
tria y que haga mas evidentes los limites
del dominio de interpretacion”. En cuanto
al ambiente de geometria dindmica genera-
do por el programa Cabri Geometry, consi-
dero que la distincién inicial entre primitivas
geométricas y de construccion es de gran
importancia. Poder hacer y grabar macro-
construcciones (que posteriormente pueden
convertirse en primitivas de construcciones
més elaboradas) constituye un elemento
fundamental que le proporciona flexibilidad
y la capacidad de hacer dibujos-dindmicos
cada vez mas complejos, que se escapan a
la intencionalidad inicial, al crear el progra-
ma, es uno de los mayores potenciales en
la exploracion de las representaciones en el
campo de las matematicas. Para dibujar las
representaciones aproximadas de los atrac-
tores de los fractales, las macros juegan un
papel clave, tanto para la sintesis de los pro-
cesos, como en la generacion de los algorit-
mos que subyacen en los sistemas iterados
de funciones. Frente a las opciones que se
pueden plantear en geometria dinamica,
Collette Laborde afirma: “[...] se pueden
plantear situaciones “robustas” y situacio-
nes "blandas”. Las primeras provienen de
la construccién de una figura que satisface
condiciones geométricas. Las construccio-
nes robustas requieren conocimientos que
los alumnos no tienen y se caracterizan por
los teoremas y propiedades al estilo tra-
dicional. Las construcciones blandas son
aun mas importantes para ayudar a obtener

las construcciones robustas. Son construc-
ciones de una figura que no satisface todas
las condiciones "?°

En este sentido, en el Cabri Geometry, se
trabajan de manera natural las construccio-
nes de la geometria euclidea. Para crear los
dibujos-dindmicos correspondientes a los
fractales autosemejantes, el estudiante se
debe enfrentar a muchas situaciones “blan-
das”, que por sus caracteristicas brindan un
espacio mas apropiado para el aprendizaje
por descubrimiento. Las situaciones proble-
maéticas que el estudiante debe enfrentar en
la construccién del modelo fractal, permite
enfocar la actividad, a propiciar el desarro-
llo del pensamiento espacial, sin enfatizar
en el bagaje de conocimientos, teoremas y
propiedades, al estilo de la geometria cla-
sica. Estas situaciones abiertas, son mas
flexibles, no tienen soluciones Unicas y per-
miten desarrollar las competencias relativas
a la solucién de problemas geométricos. El
soporte que dichas actividades prestan, ro-
bustece la capacidad de los estudiantes,
cuando deben enfrentar problemas més for-
males, cuya solucién implica la aplicacion de
los teoremas clasicos de la geometria. En el
momento de poner a prueba la imaginacion
y creatividad de los estudiantes, en el di-
sefno de sus propios modelos fractales, sur-
gen construcciones dificiles de lograr, que
implican el uso de resultados que no cono-
cen y que los impulsan a investigar y solu-
cionar los problemas, que surgen de dichas
situaciones abiertas. El desplazamiento es
un concepto fundamental que determina si
las construcciones permanecen invarian-
tes, con dichos cambios. El uso de parame-

29 LABORDE Colette. Soft and hard constructions with

Cabri : contribution to the learning of mathematics. Bo-
gota: XVII Encuentro de Geometria, Universidad Pedagé-

gica Nacional, 2006.
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tros en las primitivas de dibujo y primitivas
geométricas (transformaciones) permiten
crear un campo de exploracién para descu-
brir nuevos resultados y encontrar solucio-
nes alternas a los problemas surgidos en el
proceso.

4.2 Aprendizaje de la geometria fractal

Se proponen en este trabajo las siguien-
tes cuatro etapas, (correspondientes a un
esquema clésico) para el aprendizaje de la
geometria fractal:

Exploracién: como actividad de identifica-
cion y clasificacién de objetos y fenémenos
con caracteristicas fractales subyacentes.
En cualquier actividad de aprendizaje de la
geometria, las préacticas para conocer las
regiones naturales de nuestro entorno, casi
nunca se realizan, o son escasas. Al anali-
zar los fenémenos y objetos del ecosistema,
surgen diversas opciones para clasificar los

objetos fractales susceptibles de ser poste-
riormente modelizados.

Representacion-modelaciéon: como  es-
pacic para conocer y dibujar los fractales
mas famosos, detectar sus caracteristicas
y propiedades, y también para que los estu-
diantes creen sus propios fractales en com-
putador. Los fractales no solo se pueden |
representar de manera aproximada usando
el ordenador. El rescate del dibujo en lapiz
y papel, como expresién artistica, es impor- |
tante para representar algunos fractales,
por ejemplo las curvas que llenan el espa-
cio, fractal de Sierpinski, curva de Koch, |
entre otros.

Construccion Formal de los conceptos
fractales claves, soportados en las estruc-
turas algebraicas de espacio vectorial, es-
pacio euclideo y espacio afin. También es
abordado el estudio topolégico de los frac-
tales, desde los espacios métricos comple-
tos.

Aplicaciones de los conceptos fractales en la solucién de diversos problemas de la vida
cotidiana. Se abordan primordialmente las aplicaciones de la geometria fractal de la natu-
raleza, en areas como la visualizacion y modelizacion de ecosistemas de plantas, la mode-
lacién de terrenos, la representacién tridimensional (3D) de objetos, la relacion entre arte y
geometria y los fractales y el cuerpo humano. La gran cantidad de aplicaciones que tienen
los fractales hace imposible hacer un recorrido por la mayoria de ellas. El propésito de esta
etapa es profundizar en algunas pocas aplicaciones y detectar el papel de los fractales, en
la solucién de problemas, tanto dentro de la matematica, como en problemas generados

fuera de su dmbito. |
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Esquema Nro. 2 Descripcion de las etapas

5. Implementacion de la pro-
puesta didactica

A continuacién se describen las activida-
des desarrolladas, organizadas en las eta-
pas propuestas en la estrategia didactica.
Estas pretenden propiciar ambientes de
aprendizaje apropiados para construir las
nociones basicas de la geometria fractal

de la naturaleza, empleando recursos del
medio y la incorporacién de las nuevas tec-
nologias de la informacién y comunicacion
(TIC’s), al aprendizaje de la geometria. Se
usa el computador, tanto como herramienta
de trabajo, implementando las aplicaciones
para dibujar y modelar fractales, asi como
medio de aprendizaje de las caracteristicas,
propiedades, sistemas y estructuras relati-
vos a los fractales.
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Inicialmente, no se pretende la construc-
cién formal de los conceptos fractales, sino
que se plantean actividades en creciente
grado de complejidad, que permitan a un
estudiante de primeros semestres de uni-
versidad, especialmente de programas de
licenciatura en matematicas, acercarse a
las nociones basicas de autosemejanza,
iteracion, dimensién y atractor, a través de
la observacién de las formas que la natu-
raleza nos permite explorar; descubriendo
algunos de sus secretos, se puede, ademas
de conocerlas, admirarlas y fomentar en los
protagonistas de la actividad, los habitos
para cuidar y proteger el medio ambiente.
Dichas nociones pueden ser posteriormen-
te formalizadas, usando las estructuras ma-
tematicas, especialmente las estructuras

algebraicas y topolégicas, que serviran dg
contexto tedrico. '

Para construir los conceptos de autose
mejanza e iteracién, se cuenta tambiéy
con varios experimentos que, cada uno de
nosotros ha vivenciado a veces inespera
damente. Como aplicacién, se desarrollaj
algunos procedimientos comunes para ge:
nerar los fractales mas conocidos, a través
de juegos, en los cuales subyace la compa
sicion de transformaciones afines contrac
tivas en el plano (2D) y espacio (3D), de
manera especial, aquellas resultantes de
componer traslaciones, reflexiones rotacig
nes y ?ﬁomotecias, trabajadas activamente
por los estudiantes, segun las sugerenciag
de los programas de geometria. ‘

Grafica Nro.4 Triangulo de Sierpinski 3D

Fractal modelado en computador emplean-
do los principios del triangulo de Sierpins-

ki =

Gréfica Nro. 5 Arbol fractal {‘

) |
Arbol fractal generado con tres transfor- “
maciones afines en el espacio®'.

30 OLIVER, Dick y otros. Fractals
31 Fractales tomados de la aplica
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Grafica Nro. 6 Curva Koch modificada

Principio fractal para modelar contornos
sumamente irregulares, tipo isla. Basado
en cuatro transformaciones afines.

Gréafica Nro. 7 Fractal de Mandelbrot

Fractal considerado el objeto més extrafno
y fascinante encontrado en la naturaleza
matematica.

5.1 Etapa l. Exploracion

5.1.1 Actividad E-Il. Exploracién de nues-
tro medio

El caracter formalista, abstracto y simbdli-
co con el cual se inician algunas de nues-
tras clases de matematicas en primeros
semestres de universidad, nos hace creer

. dificil, realizar una actividad de campo, fue-

ra del aula de clase, en la cual ademas de
aprender a observar detenidamente, cuidar
y preservar nuestro medio ambiente, se
puedan dibujar o modelar objetos y simular
fendmenos, que desentrafien los secretos

. matematicos que tiene la naturaleza. Los

ecosistemas constituyen un entorno natural
para el desarrollo de la actividad humana,
en el cual, obviamente, estan presentes los
procesos matematicos; solo hay que adop-
tar enfoques adecuados para detectar los
modelos. No se debe olvidar, que muchos
de los conocimientos que hoy tenemos del
mundo se empezaron a conocer de esta ma-
nera.

Se pretende con la primera actividad, me-

- diante la exploracién de algtn parque natu-

ral, identificar y clasificar objetos del medio
en los que estd inmersa la propiedad de
autosemejanza. Se busca descubrir las pro-
piedades de distintas clases de plantas, flo-
res, hojas (como los helechos de distintos
tipos), arboles grandes y pequefos, espigas
de trigo, hojas de distintas formas y colo-
res, hortalizas (como un coliflor o un bréco-
li). Ademas de admirar el paisaje de nues-
tro entorno, se deben observar las formas
de las nubes, de las montanas, vertientes
de rios o riachuelos, formaciones rocosas
y fésiles, usando lupas, binéculos, cdmaras
fotograficas y filmadora. Légicamente, todo
esto en su medio natural, se va a observary
no a destruir. Se recomienda tener en cuen-
ta los siguientes aspectos para esta activi-
dad:

Observar los objetos detenidamente, ano-
tando sus caracteristicas, partes y detalles
especiales. Por ejemplo, al observar un éar-
bol, se deben registrar datos como: el nu-
mero de ramas que tiene el tronco principal
y a la vez el nimero de subramas que cada
una de ellas tiene y asf sucesivamente.
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Hacer un bosquejo de los objetos, tratando
de captar sus principales detalles relativos
a la semejanza. Hacer un dibujo de la planta
o de alguna de sus partes, puede servir de
base para detectar propiedades geométri-
cas, métricas y topoldgicas, claves para la
posterior modelizacién en computador. Es
recomendable no fijar tantos parametros
para esta actividad; a veces con la obser-
vacién no intencionada se captan méas de-
talles.

Es conveniente hacer una sesion plenaria
en donde los estudiantes expongan, anali-
cen y discutan los resultados de la practica
de campo, con base en el material y datos
recopilados, las fotografias y filmaciones
hechas. Adicionalmente, se considera pro-
vechoso presentar los resultados de la ex-
ploracion bibliogréfica hecha sobre los libros
de fractales presentados en la bibliografia y
paginas WEB sobre fractales seleccionadas

" de Internet, pues muchos de estos ejemplos

clasicos, son evidencia inmediata de la pro-
piedad de autosemejanza.

La actividad orientadora del docente, per-
mite sintetizar y detallar los aspectos claves

de la autosemejanza, tratando de unificar
el lenguaje empleado por los estudiantes y
haciendo énfasis en los detalles comunes
que hay en estos objetos. Las nociones pre-:
sentes en la estructura comin de un arbol,;
un helecho, las nervaduras de una hoja, un
sistema fluvial, una rama de trigo, o de ci-
lantro, son principalmente la ramificacion
sucesiva y la autosemejanza. En otras pa-:
labras, se pueden encontrar partes de es-
tos objetos parecidas al todo, excepto por
el tamafo. Si ya se esté familiarizado con
las transformaciones, se puede detectar.
una especie de homotecia en este proceso.
Es importante que el docente seleccione los
objetos encontrados por los estudiantes,
de los cuales algunas partes se parecen:
al todo, es decir, en donde la autosimilari-
dad es una propiedad inherente al objeto.
Como actividad final de esta parte, se les’
pueden proporcionar los dibujos de los si-
guientes modelos fractales (Gréficas 8 Y:
9) y fotografias de objetos, para confrontar
con sus representaciones y concluir sobre
los aspectos comunes. Si se dispone de los
recursos informaticos, se puede enriquecer
el trabajo con objetos dibujados en aplica-:
ciones como Xfrog.

Gréafica Nro. 8 Paisaje Fractal

Arboles de distintos tipos, nubes, montafia
basada en el conjunto de Mandelbrot.

Gréfica Nro. 9 Semilla y atractor

Diferentes representaciones de &rboles
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En el programa de Licenciatura en Matema-
ticas de la Universidad Pedagdgica y Tec-
nolégica de Colombia, se han realizado di-
versas practicas de campo aprovechando el
excelente medio natural del departamento
de Boyacé. Se han visitado zonas naturales
de Villa de Leiva, Raquira, Aquitania, Nob-
sa, Mongui, Paipa, Moniquira; los parques
botanicos de Bogotéd y Bucaramanga y el
santuario natural de San Pedro de Iguaque.
Asi mismo, se han realizado practicas en el
parque el Gallineral de San Gil. Los estu-
diantes también han visitado diversos sitios
con jardines especializados y viveros de la
ciudad.

Algunos de los estudiantes no estan acos-
tumbrados a realizar este tipo de préacticas.

La concepcion que tienen del trabajo en
matematicas, se basa en la manipulacion
de ecuaciones y el desarrollo de algoritmos
para la solucion de problemas. En la ela-
boracién de los informes, se detecta una
apropiacion del lenguaje, especialmente de
los términos relativos a los fractales: au-
tosemejanza, iteracion, transformaciones,
homotecia o cambio de escala, traslacion
o desplazamiento y rotacién. Los bosque-
jos y dibujos de los objetos seleccionados
como 6ptimos para ser modelados, pueden
ser clasificados de acuerdo con la estruc-
tura que muestran. Posteriormente, pueden
ser modelados en diversas aplicaciones de
computador. Las siguientes gréficas, son
una muestra de“as evidencias filmicas y
fotogréficas que hacen parte del material

recopilado durante las practicas de campo.
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Fotografias Nro. 2 Objetos naturales con estructura fractal subyacente

En los fractales que representan objetos de la naturaleza, las homotecias o cambios de es-
cala, especialmente las aplicaciones contractivas (es decir, el factor de reduccién varia entre
ceroy uno) juegan un papel primordial en su generacién y en la representacion del atractor. Este
concepto se ha utilizado para caracterizar y formular algunas nociones mateméaticas claves. Al
respecto Guzmén, M., manifiesta: [...] La Geometria fractal ofrece un modelo alternativo, que
busca una regularidad en las relaciones entre un objeto y sus partes a diferentes escalas. Esta
forma de regularidad no precisa el encorsetamiento del objeto en otras formas geométricas
que, aunque elementales, no dejan de ser externas al mismo; por el contrario buscan la Iégica
interna del propio objeto, mediante relaciones intrinsecas entre sus elementos constitutivos,
cuando estos se examinan a diferentes escalas. De esta forma no se pierden la perspectiva
ni del objeto global ni del aspecto del mismo en cada escala de observacion... La geometria

Fractal busca y estudia los aspectos geométricos invariantes por homotecias™*

Gréafica Nro. 10 Fractal tipo ramificacion

La semilla una Y, tres transformaciones
conforman su mecanismo de reproduccion.

La figura representa el atractor, cuando el
proceso iterativo tiende a infinito.

32 GUZMAN Miguel, y otros. Estructuras fractales y sus aplicaciones. Barcelona: Editorial Labor, 1993. pp. 5
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5.2 Etapa Il. Representacién-modelacién
5.2.1 Actividad RM-I. Retroalimentacién

Se pretende identificar los componentes y
las caracteristicas de los procesos iterati-
VOs y recursivos, explorando situaciones
probleméaticas reales y teéricas.

Se plantean a los estudiantes las siguientes
actividades, dados en los siguientes “expe-
rimentos”.

Esta situacién la hemos vivenciado algunas
veces, cuando vamos a la peluqueria: un es-
tudiante del grupo se ubica en medio de los
dos espejos. Otros dos estudiantes, colo-
can los espejos en disposicién paralela. Se
varia ligeramente el dngulo en uno de ellos,
hasta que dicho estudiante observe una su-
cesion de imagenes. {Cudl es la explicacién
de este fenémeno?

¢Cuél es la causa del ruido ensordecedor., al
acercar el micréfono al parlante de la misma
grabadora, a la cual esté conectado? Expe-
rimentar con diversas distancias.

¢Qué efecto se produce, cuando se enfoca
una camara filmadora, a un televisor al cual
esta conectada? iLa distancia determina la
imagen asi obtenida? {Por qué?

El conocido deseo pedido a un Rey, consis-
tia en que, partiendo de un grano de trigo,
por cada nuevo cuadro de un tablero de aje-
drez, se obtendria el doble del anterior. Al
final, se deberia recompensar con la suma
de los granos obtenidos por cada uno de los
sesenta y cuatro cuadros. {Cree Usted que
el Rey pudo conceder tal deseo? éPor qué?
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Muchas situaciones cotidianas trabajadag
en matematicas, en cuanto al desarrollo de
pensamiento numérico y los sistemas nuy!
méricos, corresponden al hecho de trabajaj
sistemas dindmicos simples, de tipo recursi:
VO y otros sistemas generados iteradamen
te. Por ejemplo, los estudiantes, al trabajaf
tablas de sumas o las tablas de multiplica
en realidad estédn aplicando operadoreg

como ()1, 2%( ) %*( ). a un nimerg

inicial x, (que generalmente es uno). Es de.
cir, manipulan intuitivamente las sucesioneg
y series, obtenidas de aplicar un operador
de manera iterativa. La mayoria de las ve:
ces, es necesario evidenciar la estructurg
que subyace en estos procesos iterativos)
es decir, que el estudiante sea concientel
de este proceso de generar dichas secuen:
cias. El célculo de los primeros términos de

claves para apropiarse del concepto de prof

proporcionan un ejemplo digno de explorar
En principio, se pueden hacer las listas de
los primeros términos de las sucesiones de
ndmeros pitagéricos. 33 |

33 CASABUENAS, Cecilia, CASTIBLANCO Celia y LEON
Teresa. Los nimeros pitagéricos. Documento de trabajo.
Bogota: MEN, 1985.
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Luego se hallan las formas o términos generales de las sucesiones de los nimeros lineales

L, , escuadras (“gnomon”) asociados a los impares, rectangulares R, , cuadrados C,
, oblongos o, triangulares T, , pentagonales P, , hexagonales H, , tetraédricos D,

piramidales D, , entre otros. Posteriormente, se pueden establecer las relaciones en-
tre estos nimeros figurados. Un ejemplo de las relaciones que se pueden establecer, es
que‘la sucesion de niimeros triangulares es la sucesion de sumas parciales (serie), de la

n
sucesion de ndmeros lineales; simbdlicamente, Tn = Elﬁ’ con lo cual se deducen sumato-

5 l__n(n+1)

rias de la forma =1

n
. 2 ’ " " . fose
los, 2(21 —1) =n". Asi mismo se pueden deducir algunas expresiones matematicas como,

i=1

. Otra propiedad que se puede deducir, es que todo ndmero
cuadrado se puede expresar como la suma de primeros impares consecutivos; en simbo-

T
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productos notables, del tipo (a +b)* =a® +2& +b?, al relacionar los nimeros cuadrados
y los nimeros rectangulares. También se pueden obtener otras relaciones expresadas en
sumatorias, cuando se trabajan las sucesiones mencionadas y las sucesiones de sus sumas
parciales. Este ejemplo nos puede servir para mostrar las diferencias entre sucesiones
generadas recursivamente y las generadas de manera iterada. Si se considera la sucesion:
de nimeros de Fibonnaci, se ilustra la diferencia, esta sucesién se puede expresar como:

Una diferencia, radica en el hecho que para
generar un término de la sucesién de Fibon-
naci, es necesario conocer los dos términos
precedentes de la sucesién. En las genera-
das iteradamente, el término general, per-
mite hallar directamente, cualquier elemen-
to de la sucesién, en funcién de su k-ésimo
lugar. El célculo de sucesiones y series es
de gran importancia para caracterizar al-
gunas propiedades de los fractales autose-
mejantes, especialmente para calcular su
dimensién y determinar su longitud, &rea o
volumen.

S, =3,8, =5,..,85,,,=5 + 875

7T k+2 k+1

Una vez analizadas, en reuniones plenarias,
algunas de estas actividades, los estudian-
tes detectan una estructura comin subya-
cente que nos introduce en el concepto de
retroalimentacion. En matematicas y pro-
gramacioén de computadores, a este proce-
dimiento de generacién de una sucesion se
lo conoce como proceso iterativo, base para
la I6gica recursiva. Sus elementos principa-
les, se resumen en el operador iterador:

S=<So""sk+1 T f(sk)"‘>k20

En la siguiente gréfica, se sintetizan las instrucciones que conforman el algoritmo para ge-‘
nerar una variacion del fractal de Sierpinski, en donde se ejempilifica la recursividad como

proceso fundamental.

Gréfica Nro. 12 Carpeta de Sierpinski

Fractal generado a partir de un cuadrado
y ocho transformaciones. Intuitivamente
se puede describir el mecanismo de repro- |
duccién, como el proceso de determinar
una cuadricula 3X3 y quitar el cuadrado del
centro. A los ocho cuadrados resultantes
se les aplica el mismo mecanismo, y asi su-
cesivamente. La figura esta en cuarto nivel
y es una aproximacion al fractal.

La recursividad es, algunas veces, un pro-
ceso inherente a los algoritmos implemen-
tados en computador, que permiten simpli-
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ficar la estructura de objetos o procesos de
funcionamiento de estos, en modelos sen-
cillos, con muy poca informacién. Un cam-
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dos| PO de la matematica que emplea la recursividad, es el Analisis Numérico; sus algoritmos
; 3 describen y contienen procesos iterativos que permiten obtener soluciones aproximadas a
: enj determinados problemas de tipo numérico. Cuando un método no permite encontrar solu-
::as‘ ciones, generalmente se encuentra con procesos aleatorios y caéticos. Un sencillo anélisis
“.?S‘ de estos casos, proporciona ejemplos del surgimiento de orden en procesos de naturaleza
:fn‘: cadtica, como se mostrara en una actividad posterior.

| La retroalimentacién tiene diversas aplicaciones y son incontables las manifestaciones de

| |a naturaleza que la evidencian. Sobre el tema de retroalimentacion, Briggs, J. y otros con-

. cepttian: “[...] Hablar de retroalimentacién ‘negativa’ y ‘positiva’ no implica un juicio de
'ias,j valor. Los nombres solo indican que un tipo de realimentacién regula y el otro amplifica.
an. Ahora se reconoce que las dos clases basicas de retroalimentacion estan en todas par-
ya-| tes, en todos los niveles de los sistemas vivientes, en la evolucién de la ecologia, en la

“de| psicologia inmediata de nuestra interaccion social y en los términos matematicos de los
métodos de solucién aproximada de ecuaciones no lineales. La iteracién y la no linealidad,

,)Cr:_, encarnan una tensién esencial entre el orden y el caos.". 3
1 se}
ara Grafica Nro. 13 Ejemplo de atractor ex-
pa-? trano
En procesos aparentemente deterministi-
| cos, de pronto, surge el caos incontrolable
e impredecible. Pero hay también procesos
j aparentemente aleatorios en donde sub-
yace el orden. Esta armonia entre Caos y
ge-i orden también ejerce una fascinacién que
mo ) : .
siempre ha cautivado a la humanidad.
5.2.2 Actividad RM-II. Hacia el concepto de atractor
lo r ; : AN AT, Y :
¥ Para introducir los fractales desde un enfoque intuitivo, es necesario disefiar e implemen-
58 } tar estrategias para comprender la composicién de transformaciones afines en el plano y
- . espacio, aspecto fundamental para construir el concepto de sistema iterado de funciones
ol Il (contractivas, cuyo factor de contraccién k, cumple que 0 <k <1), cuyo modelo converge
s ‘ a un atractor.
-
o 1 En la formacién geométrica establecida para educacion basica y media, se hace especial
. énfasis en el desarrollo del pensamiento espacial, inicialmente con la exploracién del es-
1" pacio tridimensional (3D) y posteriormente en el plano (2D), a través del manejo activo de
de: las transformaciones aplicadas a las figuras. Se supone que un estudiante universitario,

o R
m- 34 BRIGGS, John y PEAT, F. David. Espejo y reflejo, del caos al orden. Barcelona: Gedisa Editorial, 1994, pp 26.
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esté familiarizado con las operaciones de

traslacion, rotacién, reflexién y homotecia,

para emprender el manejo activo de figuras
fractales, en las cuales, por medio de com-
posicion de dichas transformaciones afines
contractivas y los procesos iterativos, logre
apropiarse de estos conceptos, aparente-
mente complejos.

Desde los espacios vectoriales y sus subes-
pacios, una transformacién afin es el resul-
tado de la composiciéon de una traslacion,
con una como, por ejemplo, la reflexion, la
rotacion y la homotecia, en las cuales se
enfatizara. Aqui, lo importante inicialmen-
te, es la descripcién verbal de dichas trans-
formaciones, para posteriormente hacer su
caracterizaciéon matematica, como transfor-
maciones en espacios vectoriales (opcional-
mente, particularizadas al plano y espacio
tridimensional).

Se adopta un sistema de notaciéon® y un
lenguaje intuitivo, presentado por el grupo
de fractales de la UIS, en su Taller de Frac-
tales®. Los dos conceptos claves para em-
pezar esta labor, son el de semilla (marcada
con una L en su gréfica) y el mecanismo de
reproduccién (en cuyas graficas se marca
una L), para visualizar las transformacio-
nes aplicadas, y obtener cada transforma-
cién afin que lo compone. Es importante
estimular nuestra intuicién gréfica, que fue
aprovechada por Benoit Mandelbrot, para
crear sus imagenes fractales, y hasta para

35 PEITGEN, Heinz-Otto y otros. Fractals for the classroom,
part one, introduction to fractals and chaos. New York:
Springer-Verlang, 1992.

36 Taller de Fractales. XIV Seminario Boyacense de Mate-
maticas y Fisica. Escuela Normal de Varones, Tunja. So-
ciedad Boyacense de Matematicas. Documento de traba-
jo grupo Fractales UIS, Tunja, 1992.
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|
comprender muchos problemas de la mas

tematica abstracta, que le planteaban ent
su vida escolar. Aln en su vida profesional;
él manifiesta poder corregir los errores de
programacién de computadores de sus co-
laboradores, explorando las imégenes re-
sultantes®. Es por ello que en esta parte
“una imagen vale mas que mil palabras”. Se
introduce la nocién de nivel de las image-
nes que convergen hacia la imagen fractal
(atractor), como el indice contador del ni-
mero de iteraciones aplicadas. Asi el nivel
cero es la semilla; el nivel uno, la primera
iteracion, que caracteriza el mecanismo de:
reprodugcion; la segunda iteracion es el ni:
vel dos, y asi sucesivamente (se genera una
sucesiéon de imagenes que, si converge, lo
hace a un atractor). En las siguientes grafi=
cas se describen cuatro ejemplos de cons-
truccion iterativa de fractales. En la realidad;:
la grafica del atractor es una aproximacién«
formalmente un fractal no puede ser repre-
sentado fielmente, pues este proceso tien:
de a infinito. Por esto, abusando del lengua-
je, se usa el término fractal o atractor, para
dicha aproximacion, sin perder de vista esta
distincion. Otro aspecto importante, desde
el punto de vista formal, es que no importa
el tipo de conjunto compacto que se tome
como semilla para generar un fractal, pues
el atractor que se obtiene, serd el mismo.
Por convencién, generalmente, se toma el

segmento unitario [( 1] el cuadrado unita-

rio, [O,I]x [0,1] = [0,1]2 o el cubo unitario [0,1]3'1

37 MANDELBROT, Benoit. Los objetos fractales, forma azar
y dimensién. Barcelona: Tusquets Editores, S.A, 1984.
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GraficaNro. 14 Generacion de los fractales
Carpeta de Sierpinski-Menger y fractal de Kock

Es recomendable que los estudiantes describan cada transformacion afin que compone el
mecanismo de reproduccién, en términos de los movimientos que involucran (traslaciones,
rotaciones, reflexiones y homotecias). Asi mismo, es el momento propicio para invitar a los
estudiantes, a realizar sus propios dibujos fractales, creaciones que sean el fruto de su ima-
ginacién y creatividad. Si se plasma una idea novedosa, las figuras fractales obtenidas son
muchas veces sorprendentes y llamativas. Asi mismo, es una oportunidad para el intercam-
bio de ideas, para que formulen sus conjeturas, las comprueben o refuten, las generalicen
y finalmente argumenten y convenzan a sus companeros, de que sus creaciones son las
mejores. Tales procesos, son importantes en el desarrollo de un pensamiento matematico,
mas creativo.
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&

Grafica Nro. 16 Arbol fractal

Grafica Nro. 17 Tridngulo de Sierpinski

Con relacién al atractor, se puede considerar como la representacion més aproximada del
fractal; es el limite de la sucesién de figuras, determinadas en cada nivel, cuando éste tien-
de a infinito. Algunos teéricos lo consideran como un concepto fronterizo entre el orden yel
caos. Segun Briggs y otros®, “[...] El atractor representa un poderoso concepto que abar-
ca los mundos espejos del orden y el caos. Un atractor es una regién del espacio de fases,
que ejerce atraccion magnética sobre un sistema, y parece arrastrar el sistema hacia si”.

38 BRIGGS, John y PEAT, F. David. Espejo y reflejo, del caos al orden. Barcelona: Gedisa Editorial, 1994, pp 36.
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Gréfica Nro. 18 Atractor

Obtenido por el algoritmo descrito como el
juego del caos, o conocido como la lluvia
de puntos. Se observa una representacion
aproximada del atractor del fractal.

5.2.3 Actividad RM-IIl. Fractales autose-
mejantes y espacio codigo.

Se pretende ahora, proponer actividades
para caracterizar algunas propiedades de
los fractales relativas a la métrica (longi-
tud, drea o volumen) y a la determinacion
aproximada de su dimensién. Asi mismo,
se busca establecer una relaciéon entre las
transformaciones afines contractivas que
componen un sistema iterado de funciones
y el espacio cédigo de sus simbolos.

A continuacién se mencionan algunas areas
de trabajo que proporcionan situaciones
probleméaticas y preguntas relacionadas con
los fractales autosemejantes.

Dibujos de fractales por niveles

Un juego que se puede desarrollar en gru-
posy-de maximo cuatro integrantes, es el
siguiente. Se parte del nivel cuatro (opcio-
nal) del tridngulo de Sierpinski, como con-
figuracién o tablero de juego (ver figura
Nro. 19): es de recordar que se necesitan
tres transformaciones afines contractivas
para su reproduccion. Previamente los juga-
dores describen las traslaciones, reflexio-
nes, rotaciones y homotecias inmersas en
cada transformacion afin contractiva y pro-
ceden a simbolizarlas, por ejemplo S, Ty R.

Se debe disponer de cuatro fichas por cada
transformacion (de acuerdo con el nivel de
la configuracion fractal). Para nuestro caso,
doce fichas, cuatto de ellas marcadas con
la transformacion T, cuatro con la transfor-
macién R y cuatro con la transformacion S.
Luego de ser barajadas, el jugador, a su tur-
no, elige cuatro cartas, que puede combinar
libremente, para ubicar una direccién de la
zona que debe colorear, como se ve en la
siguiente figura.

Gréafica Nro. 19 Tablero de Sierpinski
para colorear

Se deben escoger tonos vistosos y asignar
el mismo color de acuerdo a la dltima trans-
formacién afin que se aplique, para obtener
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al término del juego, una imagen apropiada;
es el momento de aprovechar para afianzar,
la notaciéon de derecha a izquierda, en la
composicion de transformaciones. Cada ju-
gador ganara a su turno, tantos puntos como
transformaciones distintas haya empleado
en la composicién. Si elige una composicién
cuya direccion ya esté coloreada, no tendra
puntaje. Es ganador del juego quien obten-

ga el mayor puntaje, una vez haya sido co-
loreado el tridngulo de Sierpinski en cuarto

nivel. Este juego posee muchas variantes y-

en las figuras fractales tipo ramificacion, se.

pueden denotar las transformaciones usan-"

do nuimeros, para establecer un puente, en-
tre los sistemas de numeracioén y las repre-

sentaciones fractales, como se muestra en"

la siguiente gréfica.

o1
a0t
% o1

¥

Gréfica Nro. 20-a El fractal binario

Dos transformaciones generan este frac-

tal. Se puede establecer una relacion entre

el sistema de numeracién binario y los ni- |

veles del fractal; por ejemplo, el nivel tres,
abarca los nimeros representados hasta
con tres cifras binarias {0, 1}

Gréafica Nro. 20-b El fractal ternario

Tres transformaciones generan este frac-
tal. Se puede establecer una relacién entre
el sistema de numeracioén Ternario y los ni-
veles del fractal; por ejemplo, el nivel tres,
abarca los numeros representados hasta
con tres cifras binarias {0, 1, 2 }

Métodos numéricos y ecuaciones iteradas.

Los métodos iterativos de Picard, Newton,
Secante, Muller, entre otros, que son em-
pleados para calcular, de manera aproxi-
mada, las raices de una ecuacién no lineal,
pueden ser empleados para evidenciar pro-
cesos de naturaleza iterativa, sin el uso de
sus graficos asociados. Los limites de las
sucesiones que generan estas férmulas
iteradas, pueden ser aproximados, usando
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sencillos programas de calculadoras o soft-
ware de matematica simbdlica (tipo, Derive

o Matlab). Al dibujar las 6rbitas que las su-

cesiones generan, su interpretacién gréafica
se constituye en una forma de deducir pro--
piedades matematicas de las series y suce-

siones. Este hecho se ilustra con el siguien-

te ejemplo: es conocido el resultado de la

expresion,




Co- |
\ . ok =(ok
g se obtiene la sucesién (%) <g (x0)>k20
3 s 1 , en donde se usa la composicion usual de
se 07 1
1 . k k-1
anl | funciones: g%(x)=x, y 8" (x,) =g(g" " (x,)).
onl 1. La sucesién en mencién, tiene como limite
re.. Dicho nimero, tiene relacion con el nimero el nimero a=1+a . Teniendo presente el
en| aureoen la literatura de teoria de nimeros  método de Picard, o iterativo simple, pro-
5o cediendo a la inversa de como se hace en
(¢=—, ). Una forma de aproximarse al ni-  este método numérico, se puede deducir
—]| mero aureo a, es considerar la funcién ite-  que la ecuacién que se estd solucionando
: es: f(x)=0, en donde f esta definida como,
i =1+ ~ , iniciando con el valo ) i =L
[ rativa, g(x,) X, 2 * f(x)=x*-x-1. En la siguiente gréfica se
e gi=1. Al construir la érbita de dicha funcion, ilustra este proceso.
i- |
> e : .
a
| X
\
| - \‘\,,
g i, e
’= ‘ "“M\\ \\
e -3 -2 A S 3
i e ‘\ \\\\ /»/'/
4 ¥ “:L /,,,,/‘
> \ AR
a \
y=x ' ‘\ 4
; b | s
= -4
- Gréfica Nro. 21 Significado grafico del método de Picard.
ve
i EI 7 JORT] . s . iz +d .
u- espacio codigo de direcciones. construye a partir de una coleccion finita de
ca .

oo osrol ob ; ] : simbolos S={al,a2,a3,_,_,ak} , (tantos como
3 arti rm - \ )
3 | teri 'tr edaz r:ms 9 ac(llcl):nse)s SN sgls transformaciones contenga el IFS), consi-
; ai £
4 o etage 88 ungloges, b I’ eS”pOS' de derando todas las palabras (concatenacion
1 or e . : Mg

iar i eSpS?C!P ERIRDE%M arI]a O infinita de simbolos), es decir, el espacio c6-
la’® por Barnsley M. %, “el espacio cédigo”. Se

39 BARNSLEY, Michael. Fractals everywhere. San Diego:
Academic Press INC, 1988.

digo se denota, por la coleccién de palabras,

en SllmbOk)S, 2={P=ailai1ai3ai4"'/vj’aij ES} . Existe
una funcién inyectiva entre un fractal como
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autosemejantes es:

conjunto y el espacio cédigo de sus sim-
bolos. La imagen de cada punto, por dicha
funcion, es llamada su “direccion”. Ademas,
se puede dotar al espacio codigo con una
métrica y considerarlo como espacio métri-
co completo. Tales espacios son trabajados
en Sabogal, Sonia.

Propiedades métricas y dimension de auto-
semejanza.

Una vez se hayan trabajado suficientemen-
te las representaciones del fractal y carac-
terizado matematicamente su modelo, se
plantean los problemas relacionados con
sus propiedades métricas y su dimension.
La teoria de sucesiones y series constituye
un referente tedrico, para caracterizar algu-
nas de las propiedades métricas de los frac-
tales autosemejantes, relativos a la métrica
y a la determinacion de su dimension de au-
tosemejanza, cuya expresion para fractales

_ &

i (lh), en donde n
es el nimero de transformaciones del IFS
y h el factor de homotecia. Para mencionar
sélo un ejemplo, la longitud de la curva de
Koch es infinita. Esto se deduce de la diver-

gencia de la serie geométrica Ex”, cuan-
do el ntmero real p, es mayor o igual

a uno ( p =1)*; en este caso, la longitud
de la curva de Koch, esta dada por la se-

a\P
rie 2(5) . El fractal copo de nieve, cons-
truido partiendo de un tridngulo equilatero,
en donde cada uno de sus lados es la curva
de Koch, tiene perimetro infinito (pues, es

40 APOSTOL, Tom M. Calculus, volumen l. Barcelona: Edito-
rial Reverté, S. A. 1972, pp 475.
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igual a tres veces la longitud de la curva de

Koch) y area determinada por 4= ? 3a, en
donde a es el lado del tridngulo. N6 deja de
sorprender, que este fractal tenga area fini-
ta y perimetro infinito al igual que muchos

fractales de este tipo, consideradas en la
literatura matematica como islas fractales. |

Fractales autosemejantes y sistemas de nu-
meracion. '

de un fractal y su “direccién”, brinda una
oportunidad para tratar problemas rela-
tivos a los sistemas de numeracién en di-

ferentes bases. Por ejemplo, en el fractal
binario, se pueden deducir férmulas como:

(o11111111..), = (01), = 22-" =1_22"‘ -1 4
i= i=

respectivos para la representacién de ni-
meros (no necesariamente enteros), en Ias
distintas bases mas comunes (potencias de
dos), se pueden deducir diversas propieda-
des relacionadas con las sucesiones y se-
ries.

Geometria diferencial y geometria fractal.

La comparacién de curvas diferenciables en
todos sus puntos y curvas no diferenciables
en muchos de ellos, ofrece un campo para
distinguir la geometria de formas “suaves”
de la geometria diferencial y formas “suma-|
mente irregulares”, propias de la geometria
fractal. No olvidar que diversos objetos de:
la naturaleza nos hacen evocar estas Ul-
timas formas. Varias consideraciones de
este tipo, como el concepto de dimension:
de Hausdorff, han servido para calcular, por
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de‘ ejemplo, la longitud costera de las islas.

en
de
ni-
108

tal

0S
U-

Otro caso digno de mencionar, ocurre cuan-
do se desean modelar terrenos irregulares
en computacién gréfica, usando algoritmos
de naturaleza fractal.

Curvas que llenan el espacio.

Otros aspectos que se pueden trabajar con
los estudiantes, son las llamadas curvas que
llenan el espacio, como la curva de Hilbert.
Por ejemplo el H-fractal, cuyo factor de am-

2
pliacién es #= ", , es una curva que cubre

una superficie, por tanto su dimensién de
autosemejanza o de Hausdorff es dos. En
el mismo sentido, al trabajar las superficies
fractales, si su grado de irregularidad es
alto, significa que su dimensién de autose-
mejanza se acerca a tres, o si la superficie
es suave, su dimension de autosemejanza

se acerca a su dimension topoldgica, que
es dos. El trabajo con diversos ejemplos
de fractales clasicos, constituye un camino
apropiado para abordar el problema de la
relacion que existe entre la dimension topo-
l6gica (usual) y la dimensién de autoseme-
janza (también conocida como dimensién
de Hausdorff o dimensién de homotecia).
En cuanto a las curvas fractales, también
han sido empleadas para encontrar piezas
irregulares (baldosas de contorno fractal)
que teselan el espacio®'.

Algoritmos computacionales.

Una forma adecuada de comprender los
procesos fractales para aquellos estudian-
tes aventajados en programacion de com-
putadores, la conforman los algoritmos para
dibujar fractales.

41 SCHROEDER, Manfred R. Fractals, chaos, power laws.
Minutes from an infinite paradise. New York: W. H. Free-
man and Company. 1996.
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| 1.Ejemplo

| 3.Video |

6. Dibujar P ——

. Dihujar

. Adelants [

Gréafica Nro. 22 Fractales dibujados por programacién de algoritmos en computador

5.2.4 Actividad RM-IV. Creacioén figuras
fractales en computador

Se pretende en esta fase, utilizar programas
especializados para el dibujo de los fracta-
les, a partir de los dibujos, bosquejos, dise-
fios y modelos matematicos ya elaborados
por los estudiantes en lapiz y papel, usando
los elementos de construccion geométrica.

El uso de las nuevas tecnologias de la in-
formacién y la comunicacién (TIC's), es un
aspecto ampliamente difundido en la actua-
lidad. Particularmente, se han desarrollado
diversos proyectos para incorporar las nue-
vas tecnologias de la informacién al curri-
culo de matematicas, uno de los cuales fue
liderado.por el Ministerio de Educacion Na-
cional (MEN), dirigido por Ana Celia Cas-
tiblanco, junto con varias universidades e
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instituciones de educacién basica y media.
Este proyecto ha generado un impulso y for-
talecimiento para el uso de los computado-
res y la calculadora, la geometria dindmica,
y las aplicaciones de matematica simbdlica,
en el aprendizaje de las mateméticas a nivel
universitario. Es cotidiano el uso programas
como Derive, Matlab, Mathematica, Maple,
Matcad para el aprendizaje en matemati-
cas, en los llamados “laboratorios de mate-
maticas”. Los programas de geometria di-
namica proporcionan un ambiente novedoso
para desarrollar el pensamiento espacial y
aprender diversos tipos de geometria. Exis-
te gran diversidad de programas de compu-
tador cuyo propésito es dibujar fractales.

En la generacion de los fractales de esta
actividad, es fundamental que los estudian-
tes desarrollen su percepcién grafica, para
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identificar las transformaciones afines que
los originan, y los movimientos en el plano
(2D) o espacio (3D), inmersos en cada una
de ellas. La descripcién verbal es importan-
te. Se establece un sistema simbdlico en el
cual el icono en forma de L, facilita la inter-
pretacion gréfica de la transformacion.

Como ya se ha mencionado, un fractal au-
tosemejante se genera mediante un modelo
geométrico bien definido, que se ha llama-
do sistema iterado de funciones (IFS’s). Un
aspecto fundamental es caracterizar cada
una de las transformaciones afines contrac-
tivas que lo conforman. Por ejemplo, en el
plano cada transformacion afin se caracte-
riza con seis coeficientes que determinan la

transformacion afin: T(v) = Av + B defini-
da del plano (R?, en si mismo. En donde

a, 4y b2 Y
Analogamente una transformacién afin en el
espacio tridimensional (3D), se determina
con doce coeficientes. De manera general,
una transformacién afin queda caracteriza-
da por una matriz asociada a la transforma-
cion lineal y una matriz determinada por la
traslacion, definidas como transformacio-
nes de un espacio vectorial en si mismo.

Antes de iniciar el trabajo de los estudiantes
con las aplicaciones de computador para di-
bujar fractales, es necesario que para cada
fractal susceptible de ser dibujado se haya
elaborado o determinado su modelo e iden-
tificadas sus caracteristicas matematicas.

A manera de ejemplo, se considera el Trian-
gulo de Sierpinski, caracterizado primero
usando lenguaje usual y luego simbdlica-
mente como se muestra en la tabla. Su
sistema iterado de funciones, esta confor-
mado por tres transformaciones afines con-
tractivas definidas sobre el plano (2D), que
se describen asi. Partiendo de un triangulo
como semilla (recordar que si se parte de
un cuadrado, el atractor es el mismo), la
primera transformacién afin contractiva se
obtiene de aplicar una homotecia a la mitad,

denotada en la grafica como T, . Para la se-
gunda transformacién, simbolizada como

T,, se aplica una homotecia a la mitad se-
guida de una traslacién de media unidad a
la derecha. La tercera transformacion, de-

notada T, es el resultado de componer en
su orden, una homotecia a la mitad (trans-

L0

formacién determinada por 0 3 )
seguida de una traslacion de un cuarto de
unidad a la derecha y media unidad hacia
arriba (es decir, una traslacién determinada

A=

%
B =
por el vector % ). El sistema iterado
de funciones queda caracterizado con seis
coeficientes por cada transformacién. En
este caso doce coeficientes para las tres
transformaciones. En la siguiente tabla se
presenta el modelo que determina de mane-
ra precisa el fractal de Sierpinski.
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Coeficientes
T f i6 Movimient:
ransiormacion ovimientos a“ alz az aZZ bl bz Probabilidad Propiedades
T H, D5o: | 005 [0 [ D 0.3333..
; Dimensién
T T, oH, 0S5 [fE07 | 0 [Te5 0 il7o5 | 03333
2 2 2 |
[o] ELOMPT
Ln(2)
T 7. eH, 0571 "0 [1070.5710:25% 1055 0.3333.. Area
3 ? 2 k
i sl
f—o0
Semilla, cuadrado unitario Mecanismo de Reproduccion
c, =[o1]x[o,]]c %2 {TI(C0 % TG T3(CO)}

Tabla. Nro. 2 Modelo del triangtlo de Sierpinski

Al presentar su gréfica en diversos niveles,
por ejemplo en el nivel uno, se dibujan tres
triangulos, en el nivel dos, nueve triangulos
que resultan de hacer todas las posibles
composiciones de dos transformaciones
de las tres transformaciones que confor-
man el IFS. En el n-ésimo nivel, se dibuja-

rian 3" triangulos, obtenidos al componer n
transformaciones, tomadas de la coleccién

TZ,TZ,} Cuando el proceso iterativo tien-
de a infinito, se obtiene el atractor, que es la
representacion del fractal. Como en los di-
bujos hechos por el estudiante o simulados
en computador, los procesos son finitos, es
decir el espacio es discreto; sélo vemos una
aproximacion del fractal (si se cuenta con
buena resolucién en la pantalla del compu-
tador, la imagen mental que se elabora tie-
ne caracteristicas de continuidad).
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El sistema iterado de funciones, se identi=
fica intuitivamente como el mecanismo de
reproduccién, y se puede tomar como un
algoritmo que contiene las instrucciones
que permiten generar el fractal. Un ejerci-
cio sorprendente para el estudiante, con-
siste en generar el fractal de Slerpmskl,
partiendo de un cuadrado como semilla, y
luego cambiarlo por un tridngulo. Al final,
se dara cuenta que el atractor obtenido es
el mismo, pues al caracterizar las transfor-
maciones afines, el proceso para obtener el
atractor es independiente de la semilla con
la cual inicia, aunque la grafica de los nive-
les en cada caso no coincidan. Aunque pa-
rezca imposible el fractal no depende de la
forma de la semilla sino del mecanismo de
reproduccién que lo genera. Aqui la semi-
lla tiene interés Unicamente didéactico, que;
facilita la visualizacion de la representacior
aproximada del fractal.




— Semilla: el tridngulo Mecanismo de Nivel dos,
1 | Nivel cero reproduccion: cada tridngulo es la
‘% Numero de iteraciones: tres transformaciones composicion de dos
=l cero afines. trargsformaciones afines
L Nombre: Fractal de Ndmero de iteraciones: una ‘
Sierpinski Nivel uno
ti-
e
In
S
13
n-
<,
y
l,
S
-
ol Nivel tres. Nivel nueve. Atractor
¢ Cada triangulo es el resulta- | Ntimero total de triangulos : | Area del fractal:nula
a1
;_ ?;rr::;g:;zo:ﬁ;;sres trans: tres a la nueve. Dimensién:In(3)/In(2).
a '
a = Grafica Nro. 23 Generacién del tridngulo de Sierpinski

ol Las practicas en laboratorio de informatica, se inician una vez terminada la fase de dibu-
nl Joen ldpiz y papel y la determinacion del modelo de cada fractal. Para dibujar y modelar
fractales autosemejantes, generados por sistemas iterados de funciones, se trabajaron
con los estudiantes y el grupo investigador, los programas: Fractal Vision, Brazil, Fantastic
Fractals, Fraclin, Fractgraf, Mathematica, Maple, Matlab, Cabri Geometre Il, Sketchpad
Geometry, entre otros.
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Gréfica Nro. 24 Interfases graficas de aplicaciones para dibujar fractales

A manera de ejemplo, las siguientes gréfi-
cas muestran algunos dibujos que los estu-
diantes elaboraron, a partir de los modelos
pre-establecidos, obtenidos durante las
précticas con los diversos programas de
computador mencionados. En primer lugar,
en las practicas de laboratorio de informati-
ca, se deben reproducir los modelos de los

w. fractales clasicos, con el fin de enriquecer

la experiencia en el manejo de los progra-
mas para dibujar fractales. La meta de esta
actividad, es la de brindar un ambiente y
espacio para la creatividad, en donde ellos
puedan inspirarse y crear modelos propios,
distintos de los contenidos en la bibliogra-
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fia, muchos de ellos sorprendentes, que sin
duda cautivarén la atencién y serviran de
motivacién, para el trabajo posterior sobre
estos temas. Por Ultimo, es importante que
el estudiante prepare el camino para formas
lizar mateméticamente los conceptos que
subyacen en los sistemas iterados de fun-
ciones (IFS’s), y contextualizarlos de mane-
ra general en espacios métricos completos,
sin que éste sea un obstéaculo para la crea-
cion artistica de los modelos fractales del
estudiante y, que sin lugar a dudas, es sola-
mente el camino inicial en el trasegar poste-
rior, en el amplio mundo de la teoria fractal.
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SEMILLA'Y

REPRODUCCION ATRACTOR

DESCRIPCION

Cinco transformaciones
conforman el sistema ite-
rado de funciones. En las
cuatro de la esquina se
aplicaron homotecias, en
tres de ellas traslacio-
nes. En la transformacion
del centro ademas de las
mencionadas interviene la
rotacion.

El' mecanismo de repro-
duccion se basa en la
triangulaciéon  apropiada
de los colores . Intervie-
nen tres transformaciones
afines en su generacion.

Variados fractales se pue-
den obtener al modificar
las transformaciones del
sistema iterado de funcio-
nes. Para este ejemplo se
tomaron cinco transfor-
maciones afines.

e 3
>, b

'] Gréafica Nro. 25 Creacion de fractales clasicos

mas detalle los objetos de la naturaleza existentes en su medio.

Como evidencia de la efectividad de esta Teoria Fractal en la modelacién de los ob-
jetos de la naturaleza, se presentan los siguientes ejemplos, con la seguridad de que
se constituirdn posteriormente en sencillos ejemplos, comparados con los modelos
formulados por los estudiantes, tomados en las précticas realizadas para conocer con
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SEMILLA Y -
REPRODUCCION ATRACTOR DESCRIPCION

Semilla: Azul oscuro.

Mecanismo de reproduccion:
Cuatro transformaciones afines.

T1: homotecia, rotacién y traslacion.
T2: homotecia, rotacién y traslacién.
T3: homotecia, rotacion y traslacion.
T4: homotecia, rotacion y traslacién.
Los cuatro primeros niveles simulan el tronco y
las ramas.

A partir del quinto nivel, se colorea de verde
para simular las hojas.

1

Semilla: Azul oscuro.

Mecanismo de reproduccion:

Cuatro transformaciones afines.

T1: homotecia, rotacion y traslacion.

T2: homotecia, rotacion y traslacién.

T3: homotecia, rotacion y traslacion.

T4: homotecia, rotacion y traslacion.

El cambio de escala no es igual tanto para eje
X COmMo para eje y.

Representacién del helecho por lluvia de pun-
tos.

Semilla: Azul oscuro.

Mecanismo de reproduccion:

dos transformaciones afines

T1: homotecia, rotacion y traslacion.
T2: homotecia, rotacion y traslacion.
Los tres primeros niveles se pintan de verde, el
cuarto de amarillo.

e Gréfica Nro. 26 Modelacién de objetos de la naturaleza
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Grafica Nro. 27 Creacién de fractales clasicos
Imagenes fractales creadas por estudiantes

S

9.3 Etapa Ill. Construccién formal

Las estructuras algebraicas, son el contexto natural para los fractales autosemejantes,
generados por sistemas iterados de funciones (IFS’s). Inicialmente, un aspecto importante,
es detectar las estructuras de grupo de las transformaciones que han sido trabajadas, es-
tableciendo su relacién con otras de grupo del espacio vectorial, cuando son consideradas
las operaciones suma de vectores y producto de un escalar por un vector. Las relaciones
también se pueden establecer entre el campo escalar al considerar las operaciones de
Suma y producto. Para mencionar solo dos ejemplos de dichas relaciones, componer tras-
laciones es mateméaticamente equivalente a sumar vectores (dicho de otra forma, el grupo
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abeliano de composicién de traslaciones es
isomorfo al grupo aditivo del espacio vecto-
rial). El segundo ejemplo, componer homo-
tecias equivale a multiplicar sus escalares
(el grupo de composicién de homotecias es
isomorfo al grupo multiplicativo de escala-

res no nulos). En el siguiente diagrama, ses
presentan sucintamente las estructuras que
se deben trabajar y las relaciones por esta- |

estos temas depende de la formacién de los |
estudiantes hasta el momento recibidas. |

Campo de Escalares

Espacio Vectorial 1 A 7 A
Suma
A A 7
| Subespacios J
r [ Transformaciones | 1

w_Traslacion | | Reflexion | ! Rotacion® J |7Homotecia |

v v
Grupo de Grupo de Grupo de Grupo de o
Traslaciones Simetrias Rotaciones Homotecias

i o

B i

TRASLACIONES

Transformaciones Lineales

QJ

Transformaciones Afines

AFINIDADES REGULARES
ESPACIO AFIN

- _d

| AFINIDADES CONTRACTIVAS |

| SISTEMAS ITERADOS DE FUNCIONES |

FRACTALES AUTOSEMEJANTES

| AuTOSEMEJANZA

|  RECURSIVIDAD |

e .

DIMENSION

—
=

ATRACTOR |

Esquema Nro. 3 Contextualizacion teérica de los fractales autosemejantes.

Una alternativa més formal es la de contex-
tualizar los fractales desde la topologia, es-
pecialmente como subconjuntos que estan
dentro de los espacios métricos completos.
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En la seccién de teoria de fractales se men-
ciona brevemente este enfoque, que se es-
quematiza en el siguiente diagrama.




——

[ ESPACIO METRICO COMPLETO (X,d) |

r ~ COLECCION DE SUBCONJUNTOS |

_ COMPACTOS DEL ESPACIO H

Esquema Nro. 4. Fractales autosemejantes

Contextualizacién en la topologia de espacios métricos

5.4 Etapa IV. Aplicaciones

Se pretende en esta etapa recopilar, estu-
diar y analizar las aplicaciones més cono-
cidas de la teoria fractal de la naturaleza.
La gran cantidad de problemas en donde se
aplica este tipo de geometria permite des-
cribir sélo algunas aplicaciones, que se cla-
sifican en modelacién de plantas y ecosis-
temas, modelacién de terrenos, teoria del
caos y relacion arte - geometria.

Los intereses y expectativas de los estu-
diantes determinan la temética de aplica-

cién enfatizable y el grado de profundidad
con el cual se aborda su estudio. Por cues-
tiones practicas, es recomendable que cada
estudiante aborde pocas aplicaciones, pues
en el ambito de la ciencia, ellas involucran
tematicas avanzadas que corresponden al
desarrollo de investigacién de punta. Si se
desea profundizar un poco més, se deben
precisar las tematicas elegidas, pues en
cada una de ellas se detectan también mu-
chos problemas por solucionar, cada uno de
los cuales posee grados diversos de com-
plejidad, aunque generalmente presentan
alto grado de dificultad.
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5.4.1 Relacidon Arte - Geometria

La geometria fractal de la naturaleza se constituye en un puente entre la cada vez mas:
evidente relacion entre Matematica y Arte. Carlos Vasco, en su articulo “Las Matematicas’
como arte, y las artes como matematica”, nos muestra algunos ejemplos que han manifes-
tado esta estrecha relacién, cuando manifiesta: “[...] También la pintura y la escultura se
han practicado como juegos mateméticos de combinaciones de figuras planas y sdlidas..
El célebre Mondrian jugé siempre con recténgulos y cuadrados para lograr fascinantes’
efectos visuales...; al preguntarle alguien por qué pintaba tantos cuadrados, miraba aten-
tamente su pintura y decia: “yo no veo ningiin cuadrado”. Efectivamente, nosotros vemos
que esos cuadrados se desplazan, se enlazan, hasta que el cerebro se embriaga de lineas
y superficies y de pronto desaparecen los cuadrados y nos queda la agradable experiencia
estética de contemplar una verdadera obra de arte.” #? '

En nuestro ambiente cultural, cada vez son més populares los grabados del pintor holandés
Maurits Escher, en muchos de los cuales subyacen principios matematicos, de tipo geomé-
trico y especialmente de carécter fractal. Este es un aporte de un artista considerado lego
en matematicas, pero cuya obra evidencia un rico sustento en esa ciencia; ha inspirado a
muchos en su creacién matematica, sin desconocer el papel que estos han jugado en la
inspiracion del magnifico artista. Vasco manifiesta al respecto: “ El pintor Holandés Maurits
Escher nos legé la més apasionante coleccién de grabados, litografias, plumillas y acua-
relas que presenta la historia del arte como matematica, teselaciones del plano grupos
cristalogréficos, rotaciones y reflexiones de todo tipo hacen de sus cuadros una exhibicién’

de juegos artificiales deslumbrantes 1

Gréfica Nro. 28 Grafica Nro. 29 }
Dia y Noche, grabado en madera. 1939. Limite Circular IV, grabado en madera. |
1960. “

42 VASCO, Carlos E. Un nuevo enfoque para la didactica de las matematicas. Volumen |, Bogota: Ministerio de Educacién.
Nacional, MEN, 1992, pp. 106. 1

43 VASCO, Carlos E. Un nuevo enfoque para la didactica de las mateméticas. Volumen |, Bogota: Ministerio de Educacién
Nacional, MEN, 1992, pp. 106.
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La obra de Escher presenta inmersas es-
tructuras geomeétricas, topolégicas y fracta-
les, aungue su autor siempre se consideré
completamente lego en ciencias exactas.
Esto refuerza la idea de que trabajar con
matematicas implica necesariamente ha-
cer arte, y viceversa; ademas confirma que
existen muchas ideas comunes en la crea-
cién artistica y matematica. Los conceptos
de la geometria fractal se perciben en es-
tas obras, el modelo hiperbélico de Poinca-
ré, en donde se construyen teselas a partir
de transformaciones afines contractivas,
logradas inicialmente como teselas regula-
res, para evolucionar en otras de contorno
fractal intermediadas por un proceso que
aparenta ser continuo. Los procedimientos

iterativos para querer encerrar el infinito
en una porcién finita del plano, al igual que
el juego con la perspectiva que le permiten
sugerir ilusiones 6pticas, la construcciéon de
las espirales logaritmicas y el dibujo sobre
formas con caracteristicas topoldgicas es-
peciales al estilo de la banda de Moebius,
ocupan un lugar preponderante en su obra.
Es decir, con sus ideas intuitivas, tal vez
sugeridas por mateméaticos de principios
del siglo veinte, logré niveles de abstrac-
cién en el arte, que solo décadas después
fueron consolidados por unos matematicos
pragméticos como Mandelbrot y formaliza-
dos por otros tegricos como Hutchinson y
Barnsley. '

Evolucion Il, grabado en | Limite Circular lll, grabado | Mas y Més Pequerio |, xilo-
madera. en madera, 1959 grafia.
19309. 1956.

Gréafica Nro. 30 Grabados de Escher con caracteristica fractal

ol

Escher puede ser considerado el precursor del naciente arte fractal, que debe su gran apo-
geo al desarrollo de los computadores y a las redes de informacién que divulgan répidamen-
te sus creaciones a través de aplicaciones de dominio publico como Fractint, considerado
patrimonio de los “gomosos” en fractales, disponible en varios servidores de Internet.
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Arte fractal: Mariposa*

[ ]

Arte fractal: Buho*®

Arte fractal: Espirales®

Grafica Nro. 31 Arte Fractal con la aplicacién de fractales Fractint

Una recomendacién para los docentes de
matematicas es incorporar esta evidente
relaciéon matematica-arte en actividades de
aprendizaje de la geometria, y estimular la
investigacion en temas afines, para acercar-
nos a la dimensién artistica de las matema-
ticas. Ignorar la estrecha relacién geometria
y arte, equivale a privarnos de trabajar con
estudiantes apasionados por las matemati-
cas, motivados y entusiastas, que veran la
matematica como una oportunidad para la
inspiracién y el desarrollo de la creatividad.

44 WEGNER, Tim y TYLER, Bert. El mundo de los fractales, convierta los nimeros en una realidad fractal. Madrid: Ediciones'f

Anaya Multimedia S.A, 1995.
45 |bidem
46 Ibidem
47 lbidem
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5.4.2 Algoritmos para dibujar fractales

Detectar patrones de orden en procesos
aparentemente cadticos para representar-

1
los en figuras de naturaleza fractal es uno
de los aspectos inherentes a la teoria del

caos.

los estudiantes el siguiente juego en gruposf,;
de cuatro personas. Se basa en la composi-




cién iterada de la ecuacion ¥,.,; = Nx (1-x )

y el valor inicial fijo ¥, = 0.5. Se hacen dos
grupos, de cuatro fichas amarillas el prime-
ro (con los digitos O, 1, 2 y 3, uno en cada
ficha) y de diez fichas blancas el segundo
(cada una, marcada con uno de los digitos).
Cada jugador, a su turno, selecciona una fi-
cha amarilla que representa las unidades y
una blanca que representa las décimas. El
valor obtenido reemplaza al valor de N, en
la ecuacion iterante. Se programa la calcu-
ladora con la ecuacién resultante. A conti-
nuacion cada jugador itera la ecuacion, par-

tiendo de un valor x, = 0.5. Se calculan los
primeros valores de la secuencia finita:

(%0s FE T SO LSS EI - )

Si dicha secuencia converge a algun valor
(determinando un rango de error), el juga-
dor que eligio las tarjetas gana un punto. Es
ganador del juego el que obtenga el mayor
puntaje.

En el siguiente cuadro se expresa el signi-
ficado gréfico de realizar tales iteraciones,
que el estudiante puede dibujar como tra-
bajo complementario, usando cualquier
programa de mateméatica simbdlica. La su-
cesion anteriormente descrita, se llama la
6rbita de la funcion en el punto dado. En la
parte final se presenta la gréfica del atrac-
tor que representa este fenémeno.

Grafica Nro. 32. Significado grafico de
iterar la funcién x, , = Nx (1-x ) sobre

si misma, partiendo del punto x, =0.5 y
tomando N = 2.75. Es decir, la 6rbita de

la funcién en el punto x, = 0.5, esta dada
por:

(30 G TS E I LS E L)

Para este caso representado, la orbita es
convergente.

Los.  fractales tipo bifurcaciéon son los
ejemplos clésicos usados para demostrar
que en procesos aparentemente determi-
nisticos, surge el caos. El matematico po-
see diversas concepciones; la mas acep-
tada, consiste en considerar un sistema

dindmico como cadtico si es sensible a las

condiciones iniciales*. La teoria del caos ha
tenido amplia aceptacién en el mundo cien-
tifico, y esté siendo usada para solucionar
problemas, y caracterizar fenémenos apa-
rentemente cadticos, en la economia, la fi-
sica y en metereologia, para mencionar solo
algunas de ellas.

48 LORENZ, Edward. La esencia del caos, un campo de
conocimiento que se ha convertido en parte importante
del mundo que nos rodea. Madrid: Editorial Debate S. A,
1995.
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Grafica Nro. 33 Fractal Bifurcacion
Atractor extrafio que resume el comporta-

miento del proceso anterior cuando se va- |
rfan los pardmetros de la funcién. Ejemplo |

que evidencia que en procesos aparente-
mente cadticos, surge el orden.

Una forma sencilla (computacionalmente)
de representar gréficamente fractales auto-
semejantes, es usar el conocido algoritmo,
“juego del caos”. Su sencillez radica en ha-
llar una sucesion generada recursivamente,
en donde, el k-ésimo paso consiste en es-
coger de manera aleatoria, una de las trans-
formaciones afines del IFS. Simbdlicamen-

te, sea yp _ {(X,d), wTw‘"JT,.}:A}' se parte

de un punto aleatorio x, € X, y se calcula la
sucesion:

(5 T, )T, T, GO T, (T, @, D))

&

Al dibujar una gran cantidad de puntos de |
esta sucesion, en la pantalla del computa-

=l sn g

dor, es sorprendente ver una aproximacion
bastante buena del fractal autosemejante.
Dicho algoritmo demuestra que en los pro-

cesos aparentemente aleatorios y de natu- |
raleza caodtica, puede surgir un orden. (En

la siguiente gréfica se explica el algoritmo

descrito, para el fractal tridngulo de Sierp-_;f

inski en el plano ).

Gréfica Nro. 34 Juego del Caos
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5.4.3 Plantas y ecosistemas de plantas

La renderizacién interactiva de grandes es-
cenas naturales y paisajes, cobra cada vez
mayor importancia en computacién grafica.
Se aplica en éareas tan diversas como el di-
sefio y embellecimiento de entornos artifi-
ciales de jardines y parques, la visualizacién
de espacios disefiados en arquitectura, la
interaccién constante en escenas naturales
realistas de los juegos de computador, los
ambientes de realidad virtual y el area de
simulacion.

La representacion de ecosistemas conlle-
va un grado de complejidad mayor que las
representaciones elaboradas con interven-

cion del hombre; es el caso de casas, edi-
ficios, ciudades, estructuras viales, ya que
la geometria subyacente en las formas de
la naturaleza, muchas veces hacen parte de
la no diferencial, caracterizada por formas
totalmente irregulares, contornos quebra-
dos bastante fragmentados y distribuciones
aleatorias.

En las Gltimas décadas se ha avanzado ver-
tiginosamente en los sistemas de genera-
ciéon de ecosistemas y especificamente de
plantas, cada vez con una mayor calidad de
realismo, para lo cual se han creado diver-
sos métodos, aplicaciones y lenguajes. En
el esquema se presenta una panorédmica de
la presentacion de los aportes de los inves-
tigadores en esta éarea

Esquema Nro. 6 Ecosistemas de Plantas
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Modelos simples de plantas.

Algunos aspectos inherentes a las formas y
crecimiento de las plantas y su interaccion
han sido estudiados por Prusinkiewicz y
otros, principalmente basados en Sistemas
de Lindenmayer conocidos como L-Sys-
tems: Los Sistemas de Funciones lteradas,
con Michael Barnsley (lterated Functions
Systems, IFS), algoritmos parametrizados
y un conjunto de componentes de Xfront
Systems.

Forma y crecimiento de las plantas.

La generacion de plantas se considera un
problema importante en la Computacion
Grafica. Segun Prusinkiewicz los aspectos
y extensiones en el area de representacion
gréafica de plantas y la simulacién de su cre-
cimiento, incluye aspectos como: descrip-
cién estatica de la estructura de una planta,
animacion de su crecimiento y evolucion, si-
mulacién de mecanismos fisioldégicos en su
desarrollo, uso de datos experimentales en
la construccién de modelos de plantas, con-
trol artistico de estos, modelacion realista
de érganos de plantas tales como hojas
flores, frutos; elaboracién de software de
disefio de plantas que incluyen lenguajes,
interfaces visuales, estructuras de datos y
algoritmos, por dltimo renderizacién realista
de plantas, paisajes y de grandes ambien-
tes de ecosistemas

Una de las herramientas mas poderosas
para representar graficamente complicadas
estructuras de la naturaleza, son los llama-
dos Sistemas de Lindenmayer, o comun-
mente conocido como L-systems, bastan-
te utilizado en dos areas: la generacion de
fractales y modelacién realista de plantas.
Segln Lintermann y Deussen Los L-sys-
tems son sistemas de re-escritura de cade-
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nas, similares a la gramatica de Chomsky.
A partir de unas palabras llamadas axiomas
se deriva una sucesién de letras por apli-
cacién paralela de reglas de re-escritura de
cadenas.

Un proceso posterior consiste en que las
cadenas generadas sirven como secuencia
de comandos para interpretar el compor-
tamiento de la tortuga grafica que genera
datos geométricos. Algunas extensiones

- son sistemas que incorporan las gramati-

cas paramétricas y de contexto sensitivo,
asi como los procesos estocésticos para
reescritura de reglas. Estas técnicas han
permitido la simulaciéon de mecanismos fi-
siolégicos, como aquellas que regulan la se-
crecion de hormonas. Adicionalmente, pue-
den ser modeladas propiedades de plantas
como los foto-tropismos y gravi-tropismos.
Algunas extensiones de L-system como dL-

systems, definen ecuaciones diferenciales,

para introducir la continuidad en los proce-
sos, hasta ahora considerados discretos. En
la siguiente grafica se visualiza la interface
gréafica de la aplicacion L-system 4.0.

De acuerdo con Lane y Prusinkiewcz, un
modelo L-system genera plantas, represen-
tadas como cadenas de simbolos, que pue-
den ser parametrizadas. Estas cadenas de-
finen tanto la topologia como la geometria
de las estructuras resultantes. Un proyecto
L-systems se compone de tres componen-

tes: el alfabeto que es el conjunto de simbo-

los que representa los diversos componen-

tes de la planta; el axioma que representa

el estado inicial de la estructura modelada;
y una lista de reproducciones que define el

desarrollo de las componentes de la planta,
en etapas a través del tiempo. Una exten-

sién de los L-systems, denominados Pseu-
do-Lsystems hace posible la re-escritura de
dos o mas simbolos usando una sola regla’




de reproduccién. La extension Open L-systems permite captar las interacciones de la plan-
ta capturada, con su entorno natural. Adicionalmente la extensiéon Multiset L-systemsh,
unifica y extiende a las estructuras de ramificacién, dos nociones de L-systems: el sistema
evolutivo, con un conjunto finito de axiomas y L-systems con fragmentaciéon. En un Multiset
L-systems, el conjunto de reproducciones opera sobre una colecciéon de cadenas que repre-
sentan muchas plantas, nuevas cadenas pueden dinamicamente ser adicionadas o removi-
das desde la coleccién, representando organismos que son adicionados o removidos desde
la poblacién de plantas. Formalmente un sistema: context-free non-parametric Multiset
L-systems es una 4-uplaG=[V, % ,Q, P ], donde V es un conjunto finito de simbolos que
constituyen el alfabeto, % es un conjunto de simbolos reservados de fragmentacién, Q es
un conjunto finito de palabras sobre V, llamados axiomas y P el conjunto de producciones.

Plantas a partir de IFS’s

Una de las herramientas para modelar las estructuras tipo ramificacion de los objetos de
la naturaleza, son los sistemas de funciones Iteradas. La nocién de Sistema de funciones
iteradas se ha extendido a P-IFS, en donde se incorpora la aleatoriedad para generar los
gréficos, empleando la representacion por puntos y el algoritmo conocido como “juego del
caos”. Finalmente los R-IFS son los sistemas de funciones iteradas recurrentes, estructu-
ras mucho més generales, en donde los coeficientes de las transformaciones se almacenan
en matrices, lo que facilita el trabajo al dibujar modelos parametrizados.

e
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Objeto de la naturaleza Modelado en computador

Gréafica Nro. 35 Modelacién en computador de objetos de la naturaleza
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Generacion de grandes paisajes naturales

Modelar y renderizar escenas naturales im-
plica diversos problemas. Primero el terreno
debe ser modelado y las plantas distribuidas
apropiadamente para simular mas realismo,
reflejando la interaccién entre los tipos de
plantas y su relacién con el entorno. Una
escena natural puede consistir en millones
de plantas primitivas, renderizadas eficien-
temente, en donde se incorpora la sutileza
de la iluminacién en ambientes naturales.
Un sistema para desarrollar estos ambien-
tes es descrito mas adelante, en donde ini-
cialmente se disefa el terreno usando un
editor grafico interactivo; la distribucion de
las plantas la determina el usuario (como si
disenara un jardin) cuyas plantas individua-
les estan representadas por modelos pro-
cesados paramétricamente. La complejidad
geométrica de la escena se reduce median-
te “muestras aproximadas”, en las cuales,
plantas, grupos de plantas y plantaciones
son aproximadas por objetos representati-
vos, para luego renderizar la escena.

Visualizacion interactiva de ecosistemas
complejos de plantas.

El disefio es util para visualizacion de esce-
nas realistas, simulaciéon de renovacion de
bosques, plantacién de pastos, ambientes
naturales modificados por el hombre, di-
sefio de ambientes naturales intermedios,
como zonas reforestadas luego de un incen-
dio, entre otras. Existen diversas aplicacio-
nes para tales propésitos. Otras &reas han
sido invadidas por el empleo, con cardcter
educativo, de estas aplicaciones de mode-
lacién de ecosistemas, para animacion por
computador, expresion artistica, simulado-
res de vuelo y juegos. '

Métodos de modelacién e interfaces de
usuario para la creacién de plantas

Lintermann y Deussen proponen una apli-
cacién para el disefio de objetos naturales
con estructura de ramificacién, en donde
combinan métodos de modelado para las
propiedades geométricas y de estructura,
empleando una técnica basada en grafos
que contiene iconos para la representacion
grafica de los componentes. A través de la
interface grafica, los usuarios determinan
las propiedades geométricas y definen las
estructuras de reproduccion en el sentido
de la formacién de la planta. Un aspecto
importante lo constituye la incorporacién de
técnicas de modelados para los 6rganos de
la planta, determinando factores de curva-
tura axial y colateral y editando formas para
el contorno, fijados por el usuario. Adicio-
nalmente se implementan diversas formas
de tropismos que simulan la interaccion
de la planta con su entorno: por ejemplo,
la influencia del viento, y efectos como la
sensibilidad a la gravedad, Gravi-tropismo y
a los campos de luz. En las siguiente grafi-
cas se muestra un ejemplo de la generacion
de la flor Diente de Ledn, presentado por
Lintermann y Deussen*® y elaborado con la
aplicacién X-frog, en donde la intuicién del
usuario experimentado contribuye a obte-
ner excelentes resultados.

Modelar y rederizar escenas naturales con
miles de plantas presenta una diversidad
de problemas. Esta propuesta paralela y
similar a las descritas hasta ahora, debida
a Deussen, Hanrahan, Lintermann, Mech,
Parr y Prusinkiewicz, desarrolla un proceso
para representacién de ecosistemas; alla

49 LINTERMANN, Bernd and DEUSSEN, Oliver. Interactive
modeling of plants. IEEE Computer Graphics and Applica-
tions, 1999.
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se modela el terreno y sobre éste se apli-
can técnicas de distribucién de las plantas
de manera realistica, reflejando las interac-
ciones entre las plantas y de ellas con su
entorno; se emplean modelos geométricos
de plantas individuales de acuerdo con sus
ubicacion dentro del ecosistema; todas de-
ben ser sintetizadas para poblar la escena
y, debido a la complejidad de estas, se in-
corporan técnicas de renderizacién apropia-
das. En el siguiente diagrama se bosqueja
la arquitectura de dicho sistema, resaltando
en color las etapas en done el usuario inter-
viene.

La modelaciéon y renderizacion de grandes
escenas conllevan diversos problemas por
la gran cantidad de informacién que debe
manejarse. Esta area seguird siendo un
campo de investigacién permanente muy

importante de la computacién grafica y su:
desarrollo se enfatizara en sistemas dis-*
tribuidos, graficacién en tiempo real y en
entornos de realidad virtual. La generacion:
individual de plantas, con empleo de estruc-
turas matematicas de caracter recursivo,
constituye una herramienta para obtener
mejores resultados en la optimizacion tanto |
en velocidad de procesamiento de los da-
tos como en el uso de recursos de memoria.
Las técnicas de visualizacién evolucionan y
se adaptan a la complejidad del problema
de modelacién de los ecosistemas. Muchas
técnicas han surgido para tratar de solucio-
nar en parte este problema. Las aplicacio-
nes e interfases de usuario deben explotar
el conocimiento intuitivo de los usuarios
experimentados, y la interaccién usuario-
maquina, permitira crear y simular procesos
naturales cada vez mas cercanos a la reali-
dad. ‘

Representacion de plantas con Xfrog*®

50 LINTERMANN, Bernd and DEUSSEN, Oliver. Interactive modeling of plants. IEEE Computer Graphics and Applica- ]

tions, 1999.
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Grafica Nro. 36 Plantas susceptibles de ser modeladas con
fractales V-variables y superfractales

Mecanismos de nivel de detalle LOD han
sido desarrollados para reducir la enorme
complejidad geométrica, de manera parti-
cular para modelar arboles. Un futuro tra-
bajo se podria enfocar a modelos de anima-
cién para simular crecimiento de plantas,
que es incorporado actualmente basado en
técnicas de Key Framing.
Gt

5.4.4 Modelaciéon de terrenos

Un nuevo método para la generacién de su-
perficies fractales es utilizado por las apli-
caciones en modelacién y representacion
de terrenos; una descripcién de dicho méto-

do, y su justificacion como herramienta para
representar elementos de la naturaleza, se
presenta mas adelante.

Debido a la complejidad inherente a los
sistemas de informacién geogréfica, es ne-
cesario reducir las estructuras espaciales;
por ejemplo, en lo referente a los conceptos
geométricos, a primitivas sencillas como
puntos lineas y poligonos. Esta labor es
menos complicada cuando se trata de es-
tructuras de caracter topolégico propias de
los sistemas de representacién geogréfica,
cuyas relaciones son complicadas de mani-
pular.
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Grafica Nro. 37 Diversas capas de informacién
para modelacion de terrenos

En la aplicacion que se describe a continua-
cion, solo se trabajan algunas capas de las
que componen la base de datos de un SIG,
como la hidrografia, topografia y vegeta-
cién, entre otras; por eso es solo un acerca-
miento a las opciones de visualizacién 3D,
implementada en algunos SIG.

Como se ha visto en la representacion
geométrica de superficies, casi todas los
métodos se basan el la geometria euclidia-
na, como parte de la geometria diferencial,
por ejemplo en el uso de curvas suaves o
diferenciables. Pero la geometria que sub-
yace en la naturaleza no obedece a ese
caracter diferencial, sino a la fractal, incor-
porada como una herramienta fundamental
para modelar las intrincadas superficies
irregulares de las montanas, la complejidad
en la formacién de las nubes, la naturaleza
fragmentada de los contornos de las hojas
de una planta, las estructuras de ramifica-
cion de los rios y algunos objetos y feno-
menos de la naturaleza, solo mencionando
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algunas de ellas. Un elemento importante
en las apliéaciones gque modelan terrenos es
la incorporacion de técnicas de naturaleza
fractal que proporcionan un realismo mayor
a la hora de representar las superficies te-
rrestres, las nubes y la vegetacion.

Creacién de paisajes con VistaPro 4.0

El programa VistaPro 4.0 es un simulador
de paisajes interactivos 3D, que usa méto-
dos de representacion de los terrenos, ba-
sados en superficies fractales como una de
sus opciones, para generar superficies frac-
tales de manera aleatoria. Asi mismo usa
los formatos de gréficos U.S. Geological
Survey (USGS), con el cual han sido mode-
lados parte de la topografia de los terrenos
de Estados Unidos. También es compatible
con el formato de archivo Digital Elavation
Model (DEM), un formato de archivo que
contiene informacion para reduccién de pai-
sajes digitales tridimensionales.




Grafica Nro. 38 Paisajes virtuales generados con VistaPro 4.0

A continuacion se describe en forma gene-
ral la representacién de superficies fracta-
les sobre la cual se basa el programa Vista-
Pro, para la creacién de superpies en forma
aleatoria, basado en el movimiento brow-
niano y browniano fraccionario.

El movimiento Browniano es aleatorio; es
decir, cuando una particula realiza algun
tipo de desplazamiento, esta dependiendo
de des factores: el primero, la ubicacién en
el espacio, y el segundo, el tiempo. Si esta
particula realiza un giro inesperado en un
tiempo t inesperado, la trayectoria sera un
tanto desordenada. Pero si se traza la tra-
Yectoria de dicha particula, se evidenciara
una fuerte relacion entre esta clase de mo-
vimiento y la Geometria Fractal. Este tipo
de “desorden” puede ser bien aprovechado
en diferentes programas de computacion,
especialmente el VistaPro, que estd basa-

do en este movimiento para la realizacién
de paisajes naturales virtuales, tanto en la
generacioén de los terrenos como el la con-
figuracién de las formas irregulares, de los
contornos de islas lagos, etc. La generacién
de superficies fractales se basa asi mismo,
en el llamado movimiento browniano frac-
cionario.

Para explicar el algoritmo fractal de re-
presentacion de una superficie, se parte
de un tridngulo y, tomando los puntos me-
dios de cada tridngulo, se divide en cuatro
sub-tridangulos. Dichos puntos medios son
tomados como nodos que pueden despla-
zarse aleatoriamente en sentido vertical de
acuerdo con una interpolacién aplicada a los
ejes, con relacion a los vértices originales.
En la siguiente gréfica se ilustran los pasos

- basicos para la generacioén de dicha super-

ficie.

Prospectiva Cientifica

79




Triangulo original

Division en malla

Proceso iterativo

Superficie

Grafica Nro. 39 Modelacién de terrenos con algoritmo fractal

Los modelos de mallas para representar su-
perficies fractales, generalmente usan ma-
llas triangulares por su simplicidad aunque
puede ser extendida a otros poligonos. Un
concepto importante, que incluye Vista pro
como un elemento modificable, es la dimen-
sién del terreno fractal, que oscila en un va-
lor entre dos y tres. Su interpretacion intui-
tiva corresponde, a mayor irregularidad del
terreno, de una dimension cercana a tres,
mientras que si se acerca a dos, el terreno
tiende a ser mas plano, o regular en el sen-
tido de la superficie.

5.4.5 Representacion de objetos 3D en
computador

El escenario natural para la representacion
de objetos del plano o espacio tridimensio-
nal es el espacio vectorial real y la coleccion
de transformaciones afines regulares con
la composicién usual de transformaciones,
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que tiene estructura de grupo, llamado co-
munmente grupo afin. Las afinidades regu-
lares son usadas en métodos de segmen-
tacién para reconstruccion de superficies a
partir de modelos volumétricos. Dos grupos
de métodos han sido trabajados, “Marching
Cubes” y “Octrees”. Los espacios eucli-
deos, obtenidos al dotar a un espacio vec-
torial de un producto interior, se constituyen
en el contexto para tratar con las propieda-
des métricas de modelos representados.

Las aplicaciones graficas disponibles en el
medio, para modelacién 3D, generalmente
usan algunas librerfas para graficos como
OpenGL o paquetes de librerias como Java
3D, en lenguajes de programacién como Vi-
sual Basic, Visual C++ o Java. Para el ma-
nejo de las transformaciones bidimensiona-
les y tridimensionales, se usan cominmente
las coordenadas homogéneas, expresadas
matricialmente.




Gréafica Nro. 40 Representacion de objetos con esquemas de subdivision fractal

6. Consideraciones finales

Esta investigacion se realiz6 con estudian-
tes de la asignatura Geometria Fractal, en el
programa de Licenciatura en Matematicas
y Fisica de la Universidad Pedagégica y Tec-
nolégica de Colombia (UPTC) y hace parte
de una investigacién acerca de la didéactica
de la geometria fractal de la naturaleza, del
grupo de investigacion Pirdmide, en la linea
de investigacion en educacion matematica.

Con relacion a la propuesta didactica, es
importante resaltar que el hecho de acercar
al estudiante a su realidad préxima, consti-
tuye un factor de motivacion que le permite
vivenciar experiencias relacionadas con su
pensamiento creativo y el desarrollo de su
imaginacién; ademés logra sentir admira-
cién y potenciar su capacidad de asombro
por los creadores de ésta teoria, al contem-
plar su obra; asi mismo, es el motor que los
impulsa a descubrir los secretos de la natu-
raleza, muchas veces desapercibidos.

Como consecuencia de los resultados ob-
tenidos en esta experiencia didactica, se
pueden mencionar los siguientes aspectos
relevantes.

Los sistemas iterados de funciones, la evo-
lucién de sus estructuras y el desarrollo de
la computacién gréfica, constituyen una he-
rramienta ideal para modelizar de manera
realista los objetos de la naturaleza, usando
el espacio discreto proporcionado por los
ambientes de geometria dinamica en com-
putador.

Los ambientes de geometria estética en la-
piz y papel y de geometria dinamica, tanto
externos (ej: computador), como internos
(mente), conforman sistemas semiéticos de
representacién propicios para desarrollar el
pensamiento espacial, particularizados al
espacio tridimensional (3D), al plano (2D) y
a la recta (1D). Manejados sintonicamente
(corporizados) y de manera activa, lograran
una serie de representaciones mentales,
cada vez mejor estructuradas, base para la
construcciéon de conceptos geométricos en
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complejos esquemas conceptuales en cons-
tante evolucioén.

Es posible implementar estrategias didacti-
cas de corte cognitivista para el aprendizaje
y la ensefianza de la geometria, a la luz del
enfoque epistemoldgico constructivista para
la matematica. Urge abordar de manera in-
tuitiva los conceptos bésicos de autoseme-
janza, retroalimentacién, dimensién y atrac-
tor, caracteristicos de los sistemas iterados
de funciones y sus diversos tipos, partiendo
de las ideas y experiencias previas del es-
tudiante, basicamente por trabajo colectivo
e interaccion social. Asi se prepara el terre-
no para explorar los distintos sistemas de
representacion, para cimentar la construc-
cién formal de los conceptos geométricos,
en el contexto de las estructuras matema-
ticas, generando una permanente reestruc-
turacion conceptual, con miras a lograr un
aprendizaje significativo de estas nociones
basicas de la geometria fractal.

La propuesta metodolégica para el aprendi-
zaje de la geometria fractal de la naturaleza
planteada en este trabajo, si bien corres-
ponde a un esquema tradicional, se consi-
dera una alternativa muy buena para el ni-
vel universitario. Las etapas de exploracién,
representacion - modelacién, construccién
formal y aplicacion, se pueden implementar
en cada uno de los temas que se vayan a
tratar en esta nueva geometria. No nece-
sariamente se deben desarrollar en forma
consecutiva o estricto orden. La etapa de

- exploracién, no solo motiva al estudiante

para afrontar los problemas referentes a
esta novedosa geometria, sino que le pro-
porciona una nueva forma de mirar el mun-
do y la vida, le brinda otros enfoques, para
oscultar y descubrir los secretos del fasci-
nante mundo natural. Esta visién permite
intuir que en muchos fenémenos y objetos
de la naturaleza, subyacen los conceptos
matematicos; solo hay que observarlos con
el lente adecuado para detectarlos y carac-
terizarlos.
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La fase de representacion - modelacién es
un espacio para el manejo concreto de las
transformaciones geométricas bdésicas, el
manejo activo del espacio y el desarrollo de
talleres sobre los conceptos fractales bési-
cos. Se pretende en esta etapa: explotar los
sistemas semibticos de representacion es-
taticos y dinamicos para rescatar la imagi-
nacioén tridimensional, corporizar y dominar
activamente las transformaciones afines y
conceptos fractales, potenciar las capaci-
dades para el dibujo, el disefio y modela-
ciébn computarizada de objetos naturales
abstraidos de nuestra realidad observada.
Es el momento de afrontar los problemas
matematicos que surgen del anélisis de di-
chas situaeiones; para esto se adopta una
heuristica de resolucién de problemas que
pretende desarrollar el pensamiento mate-
mético. Todas las experiencias acumuladas
se enriquecen y son la base para detectar
regularidades y abstraer similitudes que lle-
van a consolidar estructuras vinculantes del
conocimiento cotidiano con el conocimiento
académico

La etapa de construccién formal, permite
aprehender los conceptos claves, consoli-
dar nuevas estructuras conceptuales, for-
malizar ideas contextualizadas en teorias,
cimentadas en estructuras mateméticas y.
unificadas a través de un lenguaje universal.
La etapa de las aplicaciones es el espacio
ideal para ligar la teoria con la practica, asf
como buscar actividades que desarrollen
las competencias que busquen la solucién
de problemas cotidianos para mejorar las
condiciones y calidad de vida de las comu-
nidades. La meta de esta fase prioriza el
establecimiento de algunos puentes entre
el conocimiento cientifico socializado (co-
nocimiento de frontera) y la tecnologia de
punta, con el conocimiento académico.5!

51 Expreso mis agradecimientos a la Comisién Europea, a
través del proyecto ALFA-CORDIAL I, quien financié el
programa para movilidad de estudiantes de doctorado.
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